UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. 1 (1990). 35–40.

ON POSITIVE DEFINITE FUNCTIONS DEFINED ON VECTOR SPACES

Milan J. Merkle

We consider positive definite functions on topological vector spaces and some of their properties.

0. Introduction. In this paper we consider positive definite functions (PDF), defined on arbitrary linear topological vector spaces. Starting from the general definition of a PDF we first give a review of known results using only elementary methods in their proofs. Further we obtain a generalisation of a result known as HERGLOTZ lemma, and give some results for PDFs on normed vector spaces.

The theory of PDFs can be developed in a more general context of semigroups (see [3]). Inequalities for PDFs of the type that we consider in this paper are usually derived under weaker assumption that f is a characteristic function of a probability measure, making proofs much more involved than the proofs that we suggest in the Theorem 4. These inequalities are useful in probability theory (see [4] and [5]). In the last several years there has been a considerable amount of work in probability theory on infinite dimensional spaces (see, for example [6] or [7]) and the results of the type we consider in this paper may be useful in this area.

1. Definition. We say that a finite, complex-valued function f, defined on a linear vector space E is positive definite, abbreviated PDF, if, for all finite $A = (a_1, \ldots, a_n) \in \mathbb{C}^n$ and $x = (x_1, \ldots, x_n) \in E^n$ the following inequality holds:

(1)
$$\sum_{i=1}^{n} \sum_{j=1}^{n} a_i \bar{a}_j f(x_i - x_j) \ge 0.$$

2. Lemma. If f is a PDF then:

$$(2) f(0) \ge 0$$

(3)
$$\bar{f}(x) = f(-x)$$

AMS Subject Classification (1980): 46A99

Proof. Inequality (2) follows from (1) for A = 1, X = x. To obtain (3), let us take A = (-1, 1), X = (0, x). Then (1) becomes:

(4)
$$2f(0) - f(x) - f(-x) \ge 0,$$

which, together with (2) gives $f(x) + f(-x) \in \mathbf{R}$, i.e., $f(x) + f(-x) = \bar{f}(x) + \bar{f}(-x)$, so we have

$$\Im f(x) = -\Im f(-x).$$

Now let A = (1, i), X = (0, x). From (1) it follows

(6)
$$2f(0) + i(f(x) - f(-x)) \ge 0.$$

By (3) we have f(x) - f(-x) = ir, $r \in \mathbf{R}$, thus $f(x) - f(-x) = -\bar{f}(x) + \bar{f}(-x)$, i.e., $\Re f(x) = \Re f(-x)$, which, together with (5) gives (3).

3. Remark. Several simple, but useful properties can be derived directly from (1): If f, f_n , g are PDFs, then so are \bar{f} , $\Re f$, af + bg for $a, b \geq 0$, and $\lim_{n \to \infty} f_n$ if exists. It can be proved, using HILBERT space theory, that f is a PDF if and only if there exists a family of functions $m_k : E \to \mathbb{C}$, $k \in K$, where K is an index set, so that $\sum_{k \in K} |m_k(x)|^2 < \infty$ for every $x \in E$ and

$$f(x - y) = \sum_{k \in K} m_k(x) \bar{m}_k(y),$$

for every $x, y \in E$. Using this fact, one can easily prove that if f and g are PDF then so is their product fg.

Only these elementary statements are enough to show that the following are examples of PDFs:

- (i) |f| and $|f|^2$ if f is a PDF.
- (ii) g(f), where f is a PDF and $g(u) = \sum_{k=0}^{\infty} a_k u^k$, $a_k \ge 0$.
- (iii) $f(x) = \exp(i\phi(x))$, where ϕ is a real additive functional on E.
- (iv) Functions defined on \mathbf{R} : e^{iax} , $(\cos ax)^k$, $(2-\cos ax)^{-k}$, for $a \in \mathbf{R}$, $k \in \mathbf{N}$.
- **4. Theorem.** Let f be a PDF. Then for every $x, y \in E$ we have:
 - $(i) \quad |f(x)| \le f(0).$
 - (ii) $|f(x) f(y)|^2 \le 2f(0) (f(0) \Re f(x y)).$
 - $(iii) f(0) \Re f(2x) \le 4 (f(0) \Re f(x)).$

Proof. By 3(i), it is enough to prove (i) for a real-valued f; in that case, (i) is a consequence of (3) and (4). If f(0) = 0 then f(x) = 0 for all x by (i); so it is enough to prove (ii) under assumption f(0) = 1. So, assume f(0) = 1 and let X = (x, y, 0), A = (-1, 1, a). Then (1) gives:

(7)
$$2\Re\left(\bar{a}\left((f(x) - f(y))\right) \le 2\left(1 - \Re f(x - y)\right) + |a|^2.$$

Taking now a = f(x) - f(y), one gets (ii).

Inequality (iii) also suffices to be proved in the case f(0) = 1 only. In this case (iii) can be obtained from (1) with X = (0, x, x, -x) and A = (-1, -1, 1, 1).

- **5. Remark.** Using inequality (ii) of Theorem 4, one can see that a positive definite function f defined on a linear topological vector space E is uniformly continuous on E it is continuous at 0 if and only if $\Re f$ is continuous at 0. Functions with this property are of a special interest in Probability theory; by BOCHNER's theorem, every such a function is the characteristic functional of a random variable.
- **6. Lemma.** If f is a PDF and |f(t)| = f(0) for some $t \in E$, $t \neq 0$, then there is an $a \in \mathbf{R}$ such that

(8)
$$f(x+t) = f(0)e^{ia}f(x) = f(x)f(t),$$

for every $x \in E$.

Proof. If f(0) = 0 then f(x) = 0 for all $x \in E$ and (11) holds for any a. So, assume for simplicity that f(0) = 1.

Let us first consider the case f(t) = 1 for some $t \in E$, $t \neq 0$. By Theorem 4(ii) with y = x + t we have f(x) = f(x + t) for every $x \in E$. In the general case, if |f(t)| = 1, there is an $a \in \mathbf{R}$ so that $f(t) = e^{ia}$. Let ϕ be a real linear functional on E such that $\phi(t) = -a$. Then the function $g(x) = f(x)e^{i\phi(x)}$ is a PDF, as a product of two PDFs, and g(0) = g(t) = 1. By the previous particular case, we have g(x + t) = g(x), which gives (11). The case $0 < f(0) \neq 1$ results by noticing that h = f/f(0) is a PDF and h(0) = 1.

- **7. Lemma.** If f is a PDF and for all $x \in E$ we have |f(x)| = f(0), then $f(x) = f(0)e^{i\phi(x)}$, where ϕ is a real additive functional on E, i.e., $\phi(x+y) = \phi(x) + \phi(y)$.
- **Proof.** By assumption, $f(x) = f(0)e^{\phi(x)}$ for some real valued function ϕ . Additivity of ϕ follows from Lemma 6.
- **8. Remark.** As a corollary to Lemmas 6 and 7, we have the following result on characteristic functions of E'-valued random variables (i.e., continuous positive definite functions on E with f(0) = 1), generalised here for an arbitrary linear topological space (see [2], p. 475).
- **9. Remark.** Let E be a linear topological vector space and E' its topological dual. Let f be the characteristic function of an E'-valued random variable. Then there exist only the following three possibilities:
 - (i) |f(x)| < 1 for all $x \in E$, $x \neq 0$.
- (ii) |f(t)| = 1 for some $t \neq 0$. In this case f(x+t) = f(x)f(t), and along every ray $L = \{x \in E : x = kx_0\}$ we have either |f(x)| < 1 for all $x \neq 0$ in a neighborhood of 0, or f(x) = 1 for all $x \in L$.
 - (iii) f(x) = 1 for all $x \in E$; in this case $f(x) = e^{i\phi(x)}$ for some $\phi \in E'$.

Proof. Follows by the continuity of f and Lemmas 6 and 7.

38 Milan J. Merkle

- **10. Example.** Let E be a normed vector space, dim $E \geq 2$, and let S be a proper subspace of E. By Hahn-Banach theorem there is a real linear functional $\phi \in E'$ so that $\phi(x) = 0$ for all $x \in S$ and ϕ is not identically zero. The characteristic function $f(x) = e^{i\phi(x)}$ is equal to one on S. This shows that in (ii) above, the phrase "along every ray" cannot be omitted, even in the two-dimensional case.
- **11. Lemma.** Let F be a function defined on E and $Q \subset E$. Let I_Q be the indicator function of Q. For $x \in E$ define a function g by

$$g(x) = f(x)I_Q(x),$$

Then f is a PDF if and only if g is a PDF for all sets $Q \subset E$ satisfying

$$(10) 0 \in Q$$

$$(11) x \in Q, \ y \in Q \Rightarrow x - y \in Q.$$

Proof. Suppose that f is a PDF. Let $A = (a_1, \ldots, a_n)$, $X = (x_1, \ldots, x_n)$, and define $S = \{1, \ldots, n\}$, $J = \{(i, j) \in S^2 : x_i - x_j \in Q\}$. Define the relation ρ on S by $i\rho j \Leftrightarrow (i, j) \in J$. Using (10) and (11) one can easily show that ρ is an equivalence; let J_1, \ldots, J_m be equivalence classes such that $S = \bigcup_{k=1}^m J_k$. Then we have:

$$\sum_{i,j=1}^{n} a_i \bar{a}_j g(x_i - x_j) = \sum_{(i,j) \in J} a_i \bar{a}_j f(x_i - x_j)$$
$$= \sum_{k=1}^{m} \sum_{(i,j) \in J_k} a_i \bar{a}_j f(x_i - x_j).$$

Since J_1, \ldots, J_m are disjoint and f is a PDF, we conclude that all inner sums above are non-negative and the assertion follows.

To show the converse, suppose that g is a PDF for all sets Q that satisfy (10) and (11). For $X = \{x_1, \ldots, x_n\}$ let Q be the set of all linear combinations of points from X. Then the function g defined by (9) is a PDF by assumption, and

$$\sum_{i,j=1}^{n} a_i \bar{a}_j f(x_i - x_j) = \sum_{i,j=1}^{n} a_i \bar{a}_j g(x_i - x_j) \ge 0,$$

and, therefore, f is a PDF.

- **12. Example.** Let $Q = \{qc : k = 0, \pm 1, \pm 2, \ldots\}$, c = const. Then Lemma 12 gives that f is a PDF if and only if each "sample function" of f is a PDF. This result is known as HERGLOTZ lemma (see [1], p. 220).
- **13. Theorem.** Suppose that E is a normed space and f is a PDF defined on E, such that $\lim_{x\to\infty} f(x) = c$. Then $\Re c \geq 0$.

Proof. Assume f(0) = 1, with no loss of generality. Let y_1, \ldots, y_n, \ldots be a sequence in E such that $||y_i - y_j|| \ge |i - j|$. Let $x_{i,n} = y_{i^n}$ for $i, n = 1, 2, \ldots$. Without difficulties it can be proved that the following holds:

(12)
$$\lim_{n \to \infty} \left| \sum_{\substack{i,j=1,2,\ldots,n \\ i < j}} \frac{f(x_{i,n} - x_{j,n})}{n(n-1)} - \frac{c}{2} \right| = 0.$$

Let now $A = (1, 1, ..., 1), X = (x_{1,n}, x_{2,n}, ..., x_{n,n}).$ Then (1) reads:

(13)
$$n + 2\Re \sum_{\substack{i,j=1,2,\ldots,n\\i < j}} f(x_{i,n} - x_{j,n}) \ge 0.$$

Dividing (13) by n(n-1), letting $n \to \infty$ and using (12), we obtain $\Re c \ge 0$.

14. Theorem. Let E be a normed space and suppose f(x) = f(0) + g(x) + h(x), where $f(0) \ge 0$, g(-x) = -g(x) and g(x) = o(||x||), $h(x) = o(||x||^2)$ as $x \to 0$. Then f is a PDF if and only if it is equal to a constant.

Proof. Assume all conditions above, and suppose that f is a PDF. It is obviously sufficient to consider the case f(0) = 1. From the above assumptions it follows that $|f(x)|^2 = 1 + o(||x||^2)$. Therefore:

$$0 = \lim_{x \to 0} \frac{1 - |f(x)|^2}{\|x\|^2} = 2 \lim_{x \to 0} \frac{1 - |f(x)|}{\|x\|^2}.$$

By Theorem 4(ii) we have

$$\left| \frac{|f(x+y)| - |f(y)|}{\|x\|} \right|^2 \le 2 \cdot \frac{(1 - f(x))}{\|x\|^2},$$

so the FRÉCHET derivative of |f| is zero at every point $y \in E$, and |f| = const. By the continuity of f and Lemma 7, we have that $f(x) = e^{i\phi(x)}$, where ϕ is a continuous linear functional on E. But then $f(x) = 1 + i\phi(x) + o(||x||)$, which is not of the assumed form unless $\phi(x) = 0$ for all $x \in E$, and so f is a constant.

15. Example. Let ϕ be a continuous linear functional on E, and let $k \geq 2$. Then $f(x) = e^{-i\phi^k(x)}$ is not a PDF.

REFERENCES

- 1. M. LOÉVE: Probability Theory. vol. 1, New York, 1977.
- 2. W. Feller: An Introduction to Probability Theory and Its Applications. vol. 2, New York, 1966.

- 3. C. Berg, J. Christensen, P. Ressel: *Harmonic Analysis on Semigroups*. New York, 1984.
- 4. X. Fernique: Lois indéfiniment divisibles sur l'espace des distributions. Inventiones Math. 3 (1967).
- 5. S. JOHANSEN: An Application of Extreme Point Methods to the Representation of Infinitely Divisible Distributions. Z. Wahrscheinlichkeitheorie verv. Geb. 5, 304-316 (1965).
- 6. G. Kallianpur, I. Mitoma, R. L. Wolpert: Diffusion Equations in Duals of Nuclear Spaces. Stochastics 29, 285-329 (1990).
- 7. M. MERKLE: *Multi–Hilbertian Spaces and Their Duals*. Techn. Report **291**, Department of Statistics, University of North Carolina at Chapell Hill, 1990.

Faculty of Electrical Engineering, University of Belgrade, P.O. Box 816, 11001 Belgrade, Yugoslavia (Received July 5, 1990)