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ON POSITIVE DEFINITE FUNCTIONS
DEFINED ON VECTOR SPACES

Milan J. Merkle

We consider positive definite functions on topological vector spaces and some of
their properties.

0. Introduction. In this paper we consider positive definite functions (PDF), defined
on arbitrary linear topological vector spaces. Starting from the general definition of
a PDF we first give a review of known results using only elementary methods in their
proofs. Further we obtain a generalisation of a result known as HERGLOTZ lemma,
and give some results for PDFs on normed vector spaces.

The theory of PDFs can be developed in a more general context of semigroups
(see [3]). Inequalities for PDF's of the type that we consider in this paper are usually
derived under weaker assumption that f is a characteristic function of a probability
measure, making proofs much more involved than the proofs that we suggest in the
Theorem 4. These inequalities are useful in probability theory (see [4] and [5]). In
the last several years there has been a considerable amount of work in probability
theory on infinite dimensional spaces (see, for example [6] or [7]) and the results of
the type we consider in this paper may be useful in this area.

1. Definition. We say that a finite, complex—valued function f, defined on a linear
vector space E is positive definite, abbreviated PDF, if, for all finite A = (a1,...,ay) €
C" and x = (x1,...,xy) € E™ the following inequality holds:

(1) Zzai@jf(l‘i — ;) > 0.

i=1 j=1

2. Lemma. If f is a PDF then:

(2) f(0)>0
(3) flz) = f(-=)
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Proof. Inequality (2) follows from (1) for A = 1, X = z. To obtain (3), let us
take A = (—1,1), X = (0,2). Then (1) becomes:

(4) 2f(0) = f(z) = f(==) 2 0,
which, together with (2) gives f(z) + f(—z) € R, i.e., f(z)+ f(—z) = f(z) + f(—=),

so we have

() Sf(x) = =Sf(—=).
Now let A = (1,7), X = (0,z). From (1) it follows
(6) 2£(0) +2(f(x) = f(=2)) = 0.

By (3) we have f(z) — f(—z) =, r € R, thus f(z) — f(—2) = —f(z) + f(—=x), ie.,
Rf(z) = Rf(—=z), which, together with (5) gives (3).

3. Remark. Several simple, but u_seful properties can be derived directly from (1):
If f, fn, g are PDFs, then so are f, Rf, af + bg for a,b > 0, and lim f, if exists.

n—o0

It can be proved, using HILBERT space theory, that f is a PDF if and only if there
exists a family of functions mp: E — C, k € K, where K is an index set, so that

mp(z)|? < oo for every z € E and
> Img(2)] y
ke K

fle —y) = Z mp(x)my(y),

keK

for every =,y € E. Using this fact, one can easily prove that if f and g are PDF then
so is their product fg.

Only these elementary statements are enough to show that the following are
examples of PDFs:
(i) |f| and |f|? if f is a PDF.

(i) g(f), where f is a PDF and g(u) = > apu®, ax > 0.
k=0

(ii1) f(z) = exp(1¢(x)), where ¢ is a real additive functional on E.
(iv) Functions defined on R: e*** (cosaz)¥, (2 — cosaz)™*, fora € R, k € N,

4. Theorem. Let f be a PDF. Then for every xz,y € E we have:

(1) [f(@)] < f(0).

(i) |f(z) = F(y)* < 2f(0) (f(0) = Rf(z —y)).

(i#3) £(0) — Rf (22) < 4(£(0) — RF ().

Proof. By 3(i), it is enough to prove (i) for a real-valued f; in that case, (i) is
a consequence of (3) and (4). If f(0) = 0 then f(z) = 0 for all z by (i); so it is enough

to prove (i) under assumption f(0) = 1. So, assume f(0) = 1 and let X = (,y,0),
A= (—1,1,a). Then (1) gives:

(7) 2R (a ((f(2) = f (1)) < 2(1 = Rf (& —y)) + |al*.
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Taking now a = f(z) — f(y), one gets (ii).

Inequality (7i7) also suffices to be proved in the case f(0) = 1 only. In this case
(i41) can be obtained from (1) with X = (0,2z,z, —2) and A = (—1,-1,1,1).

5. Remark. Using inequality (ii) of Theorem 4, one can see that a positive definite
function f defined on a linear topological vector space E is uniformly continuous on E
it is continuous at 0 if and only if R f is continuous at 0. Functions with this property
are of a special interest in Probability theory; by BOCHNER’s theorem, every such a
function is the characteristic functional of a random variable.

6. Lemma. If f is a PDF and |f(t)| = f(0) for somet € E, t # 0, then there is an
a € R such that

(8) fla+1t) = F0)e fx) = f(2)f(1),

for every x € E.

Proof. If f(0) =0 then f(z) =0 for all z € E and (11) holds for any a. So,
assume for simplicity that f(0) = 1.

Let us first consider the case f(t) = 1 for some t € E, t # 0. By Theorem
4(7i) with y = « +t we have f(z) = f(x + t) for every x € E. In the general case,
if [f(t)] = 1, there is an a € R so that f(¢) = e'*. Let ¢ be a real linear functional
on E such that ¢(t) = —a. Then the function g(z) = f(z)e**®) is a PDF, as a
product of two PDFs, and ¢(0) = ¢g(¢) = 1. By the previous particular case, we have
g(x +t) = g(x), which gives (11). The case 0 < f(0) # 1 results by noticing that
h = f/f(0) is a PDF and h(0) = 1.

7. Lemma. If f is a PDF and for all x € E we have |f(z)| = f(0), then f(z) =
£(0)e*®*@) where ¢ is a real additive functional on E, i.e., ¢(z +y) = ¢(z) + ¢ (y).

Proof. By assumption, f(z) = f(0)e®® for some real valued function ¢.
Additivity of ¢ follows from Lemma 6.

8. Remark. As a corollary to Lemmas 6 and 7, we have the following result on char-
acteristic functions of E’-valued random variables (i.e., continuous positive definite
functions on E with f(0) = 1), generalised here for an arbitrary linear topological
space (see [2], p.475).

9. Remark. Let E be a linear topological vector space and E’ its topological dual.
Let f be the characteristic function of an E’-valued random variable. Then there
exist only the following three possibilities:

(i) |f(z)]<1forallz e E, z#0.
(i) |f(t)] = 1 for some ¢ # 0. In this case f(z +t) = f(z)f(¢), and along every

ray L = {z € E: © = kxo} we have either |f(z)| < 1 for all z # 0 in a neighborhood
of 0, or f(z) =1 forall z € L.

(iii) f(z) = 1 for all # € E; in this case f(z) = ¢"?*) for some ¢ € E'.

Proof. Follows by the continuity of f and Lemmas 6 and 7.
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10. Example. Let E be a normed vector space, dim £ > 2, and let S be a proper
subspace of E. By HAHN-BANACH theorem there is a real linear functional ¢ € E’ so
that ¢(z) = 0 for all z € S and ¢ is not identically zero. The characteristic function
f(z) = ™) is equal to one on S. This shows that in (ii) above, the phrase "along
every ray”’ cannot be omitted, even in the two—dimensional case.

11. Lemma. Let F' be a function defined on E and Q C E. Let Ig be the indicator
function of Q. For x € E define a function g by

(9) g(z) = f(z)Io(x),
Then f is a PDF if and only if g is a PDF for all sets Q C E satisfying

(10) 0eQ
(11) TEQR, yEQ =z —y € Q.

Proof. Suppose that f is a PDF. Let A = (a1,...,ay), X = (z1,...,2,), and
define S = {1,...,n}, J ={(i,j) € S? : z; —x; € Q}. Define the relation p on S by
ipj < (i,7) € J. Using (10) and (11) one can easily show that p is an equivalence;

m
let Jq,...,Jm, be equivalence classes such that S = |J Ji. Then we have:
k=1

n

Y aidjglei—wg) = ) aiajf(vi - )

= Z Z aja;f(z; —xj).

k=1 (Zzy)ejk

Since Jq, ..., J,, are disjoint and f is a PDF, we conclude that all inner sums above
are non—negative and the assertion follows.

To show the converse, suppose that g is a PDF for all sets @ that satisfy (10)
and (11). For X = {x1,...,2,} let Q be the set of all linear combinations of points
from X. Then the function g defined by (9) is a PDF by assumption, and

n n
Z ajajf(r; — ;) = Z ajajg(r; —x5) > 0,

and, therefore, f is a PDF.

12. Example. Let Q = {qc: k= 0,£1,£2,...}, ¢ = const. Then Lemma 12 gives
that f is a PDF if and only if each ”sample function” of f is a PDF. This result is
known as HERGLOTZ lemma (see [1], p.220).

13. Theorem. Suppose that E is a normed space and f is a PDF defined on E,
such that lim f(z) =c. Then Rec > 0.

TrT—00
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Proof. Assume f(0) = 1, with no loss of generality. Let y1,...,yp,... be a
sequence in E such that |y; —y;|| > |i —j|. Let @; , = ys» fori,n =1,2,... . Without
difficulties it can be proved that the following holds:

(12) lim 3 f@in —wjn) ¢

n—00 o
7,,]:'1,23...,77,
(]

Let now A = (1,1,...,1), X = (z1n,%2n,---,Tnn). Then (1) reads:

(13) n+2R Y fzim—aim) 0.

i,7=1,2,...n
1<g

Dividing (13) by n(n — 1), letting n — oo and using (12), we obtain Rc¢ > 0.

14. Theorem. Let E be a normed space and suppose f(x) = f(0) + g(z) + h(x),
where £(0) > 0, g(—z) = —g(x) and g(z) = (|2}, h(x) = o(|2|) as = — 0. Then
f is a PDF if and only if it is equal to a constant.

Proof. Assume all conditions above, and suppose that f is a PDF. It is obvi-

ously sufficient to consider the case f(0) = 1. From the above assumptions it follows
that |f(z)]? = 1+ o(||z||?). Therefore:

1- 2 1-
oo i LZUG@E 1=l
x—0 ||:L’|| x—0 ||x||

By Theorem 4(ii) we have

Fetl = FOI[° _, (0=f@)

eal N ll®

so the FRECHET derivative of |f| is zero at every point y € E, and |f| = const. By
the continuity of f and Lemma 7, we have that f(x) = e where ¢ is a continuous
linear functional on E. But then f(z) = 1+ 1¢(x) + o(||z||), which is not of the
assumed form unless ¢(z) = 0 for all x € E, and so f is a constant.

15. Example. Let ¢ be a continuous linear functional on F, and let ¥ > 2. Then
flz) = e *"®) ig not a PDF.
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