UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. 1 (1990), 31–34.

A NOTE ON q-GAMMA FUNCTION

Vlajko Lj. Kocić

In this paper certain properties of q-gamma function are studied. We prove relation (2.1) which relates the q-gamma functions in the cases 0 < q < 1 and q > 1. Some applications of this relation are also given. First, we derive an analogue of the Bohr-Mollerup theorem for the q-gamma function in the case q > 1. Our result is more general than the Moak's [3]. Also, the behavior of the q-gamma function with respect to q is considered.

1. INTRODUCTION

F. H. Jackson [1] defined a generalization of the factoriel function by

$$(n!)_q = 1(1+q)\cdots(1+q+\cdots+q^{n-1})$$

for q > 0, as well as a generalization of the gamma function by

(1.1)
$$x \mapsto \Gamma_q(x) = \frac{(q; q)_{\infty} (1 - q)^{1 - x}}{(q^x; q)_{\infty}}, \qquad (0 < q < 1)$$

(1.2)
$$x \mapsto \Gamma_q(x) = q^{\binom{x}{2}} \cdot \frac{(q^{-1}; q^{-1})_{\infty} (q - 1)^{1-x}}{(q^{-x}; q^{-1})_{\infty}}, \qquad (q > 1)$$

where $(a; q)_{\infty} = \prod_{n=0}^{\infty} (1 - aq^n)$, and x is real.

R. Askey [2] considered only the case 0 < q < 1 and showed that q-gamma function has many similar properties as classical gamma function. For example, an analogue of Bohr-Mollerup theorem is

Theorem A. Let f be the function which satisfies:

(1.3)
$$f(x+1) = \frac{1-q^x}{1-q} f(x), \quad \text{for some} \quad q, \quad 0 < q < 1,$$

$$(1.4) f(1) = 1,$$

(1.5)
$$x \mapsto \log f(x)$$
 is convex for $x > 0$.

AMS Subject Classification (1980): Primary 33A15, Secondary 33A70.

Then $f = \Gamma_q$.

D. S. MOAK [3] studied the case q > 1. He gave two analogues of BOHR–MOLLERUP theorem. He showed that the function f, satisfying (1.3), (1.4) (q > 1) and for x > 0 $\frac{d^3}{dx^3} \log f(x) \le 0$ or $\frac{d^2}{dx^2} \log f(x) \ge \log q$, is the q-gamma function.

The behavior of q-gamma function, when q changes, was considered by R. Askey [2] in the case 0 < q < 1 and by D. S. Moak [3] for q > 1.

2. RELATION BETWEEN Γ_p AND Γ_q , pq = 1

Lemma. Let $p, q > 0, p, q \neq 1, pq = 1$. Then

(2.1)
$$\Gamma_p(x) = q^{-\binom{x-1}{2}} \Gamma_q(x).$$

Proof. For example, let 0 < q < 1. Then p > 1 and we have

$$\Gamma_p(x) = p^{\binom{x}{2}} \cdot \frac{(p^{-1}; p^{-1})_{\infty} (p-1)^{1-x}}{(p^{-x}; p^{-1})_{\infty}}$$

$$= q^{-\binom{x}{2}} \cdot \frac{(q; q)_{\infty} (1-q)^{1-x_q x-1}}{(q^x; q)_{\infty}} = q^{-\binom{x-1}{2}} \Gamma_q(x),$$

which proves the Lemma.

Now, we shall give some applications of the above lemma. First, we shall prove the analogue of Bohr-Mollerup theorem for q > 1, which holds under weaker supposition than Moak's Theorem 2 from [3].

Theorem 1. Let f be a positive function defined on $(0, +\infty)$ which satisfies (1.3), (1.4) for some q > 1, and

(2.2)
$$x \mapsto -\frac{\log q}{2}x^2 + \log f(x)$$
 is convex for $x > 0$, $q > 1$

Then $f = \Gamma_q$.

Proof. Substituting

(2.3)
$$F(x) = q^{-\binom{x-1}{2}} f(x),$$

into (1.3), (1.4), (2.2), we find

$$F(x+1) = \frac{1-p^x}{1-p}F(x), \qquad \left(p = \frac{1}{q}, \ 0
$$F(1) = 1$$$$

and that the function $x \mapsto (1 - \frac{3}{2}x) \log q + \log F(x)$ is convex for x > 0. This implies that function $x \mapsto \log F(x)$ is convex for x > 0 and we conclude that the function F satisfies conditions of Theorem A. It follows that $F = \Gamma_p$, $0 , and we obtain, by using (2.3), that <math>f = \Gamma_q$, which proves the theorem.

Supposing condition (2.2) reduces to $\frac{d^2}{dx^2} \log f(x) \ge \log q$, and we obtain the result of D. S. Moak [3].

Similarly, as the Theorem 1, by using Moak's Theorem 1 in [3], it can be proved that the function f satisfying (1.3), (1.4) and $\frac{\mathrm{d}^3}{\mathrm{d}x^3}\log f(x) \leq 0$, for x > 0 is the q-gamma function, 0 < q < 1.

Also, it is easy to prove by using (2.1), that the Legendre duplication formula, Gauss multiplication formula for q-gamma function, which are obtained by R. Askey [2] in the case 0 < q < 1, hold, in unchanged form, for q > 1.

3. THE BEHAVIOR OF Γ_q AS THE FUNCTION OF q

Theorem 2.

(i) If
$$0 < r < q < 1$$
 then

(3.1)
$$r^{\binom{x-1}{2}}\Gamma(x) \le \left(\frac{r}{q}\right)^{\binom{x-1}{2}}\Gamma_q(x) \le \Gamma_r(x) \le \Gamma_q(x) \le \Gamma(x),$$

for $0 < x \le 1$ or $x \ge 2$;

(3.2)
$$\Gamma(x) \le \Gamma_q(x) \le \Gamma_r(x) \le \left(\frac{r}{q}\right)^{\binom{x-1}{2}} \Gamma_q(x) \le r^{\binom{x-1}{2}} \Gamma(x),$$

for $1 \le x \le 2$.

(ii) If
$$r > q > 1$$
, then

(3.3)
$$\Gamma(x) \le \Gamma_q(x) \le \Gamma_r(x) \le \left(\frac{r}{q}\right)^{\binom{x-1}{2}} \Gamma_q(x) \le r^{\binom{x-1}{2}} \Gamma(x),$$

for $0 < x \le 1$ or $x \ge 2$;

(3.4)
$$r^{\binom{x-1}{2}}\Gamma(x) \le \left(\frac{r}{q}\right)^{\binom{x-1}{2}}\Gamma_q(x) \le \Gamma_r(x) \le \Gamma_q(x) \le \Gamma(x),$$

for $1 \le x \le 2$.

Proof. Some of the above inequalities are proved in [2], [3].

Let
$$0 < r < q < 1$$
. Since $\frac{1}{r} > \frac{1}{q} > 1$ we have (see [3])

$$\Gamma_{1/r}(x) \ge \Gamma_{1/q}(x) \ge \Gamma(x),$$

for $0 < x \le 1$ or $x \ge 2$. Using (2.1) we obtain

$$r^{-\binom{x-1}{2}}\Gamma_r(x) \ge q^{-\binom{x-1}{2}}\Gamma_q(x) \ge \Gamma(x),$$

wherefrom follows

$$\Gamma_r(x) \ge \left(\frac{r}{q}\right)^{\binom{x-1}{2}} \Gamma_q(x) \ge r^{\binom{x-1}{2}} \Gamma(x).$$

Other inequalities in (3.1) are proved in [2].

Inequalities (3.2), (3.3), (3.4) can be proved similarly.

A direct consequence of the Theorem 3 is the following

Theorem 4. Let q > 0, $q \neq 1$. Then, for x > 0

(3.5)
$$\Gamma_q(x) = \Theta^{\binom{x-1}{2}} \Gamma(x),$$

where Θ is a function of q, x, such that

$$\min(1, q) < \Theta < \max(1, q).$$

REFERENCES

- F. H. JACKSON: On q-definite integrals. Quat. J. Pure Appl. Math., 41 (1910), 193-203.
- 2. R. ASKEY: The q-gamma and q-beta functions. Applicable Anal., $\bf 8$, $\bf 2$ (1978/79), 125-141.
- 3. D. S. Moak: The q-gamma function for q > 1. A equationes Math., 20 (1980), 278-285.

Faculty of Electrical Engineering, University of Belgrade, P.O. Box 816, 11001 Belgrade, Yugoslavia (Received June 1, 1990)