UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. 1 (1990), 25–30.

CHARACTERISTIC AND MATCHING POLYNOMIALS OF SOME BIPARTITE GRAPHS

Ivan Gutman

We add a fixed number of vertices of degree 1 to each vertex from one part of a bipartite graph. We study characteristic, matching and some related polynomials for graphs obtained in this way.

1. INTRODUCTION

Let G be a bipartite graph with a vertices v_1, \ldots, v_a of one color and b vertices v_{a+1}, \ldots, v_{a+b} of the other color. For the present consideration it is immaterial whether $a \geq b$ or $a \leq b$.

Let R_1 and R_2 be two rooted (not necessarily bipartite) graphs. Then the graph product $G[R_1, R_2]$ is obtained by identifying each of the vertices v_i , i = 1, ..., a of G with the root of a copy of R_1 and by identifying each of the vertices v_i , i = a + 1, ..., a + b of G with the root of a copy of R_2 .

The characteristic and the matching polynomials as well as the respective spectra of $G[R_1, R_2]$ were examined in a few previous publications [2], [4], [5]. In particular, it was shown [4] that for $\pi = \phi$ or $\pi = \alpha$,

(1)
$$\pi \left(G \left[R_1, R \right] \right) = \left[\frac{\pi(R_1)}{\pi(R_2)} \right]^{\frac{(a-b)}{2}} \left[\pi \left(R_1^* \right) \pi \left(R_2^* \right) \right]^{\frac{(a+b)}{2}} \cdot \left(\pi \left(R_1 \right) \pi \left(R_2 \right) \pi \left(R_1^* \right)^{-1} \pi \left(R_2^* \right)^{-1} \right]^{\frac{1}{2}} \right),$$

where $\phi(H) = \phi(H, x)$ and $\alpha(H) = \alpha(H, x)$ stand for the characteristic and the matching polynomial of a graph H, respectively, and where R_i^* denotes the graph obtained by deleting the root from R_i , i = 1, 2.

If R_1 is the star with p+1 vertices rooted at the vertex of degree p, and R_2 is the one-vertex graph, then we denote the graph product $G[R_1, R_2]$ by G[p]. It is

26 Ivan Gutman

clear that G[p] is obtained by attaching p new vertices of degree one to each vertex v_i , i = 1, ..., a of G; hence G[p] has (a + 1)p + b vertices.

Formula (1) immediately furnishes

(2)
$$\pi(G[p]) = x^{pa-(a-b)}(x^2 - p)^{\frac{(a-b)}{2}}\pi(G, \sqrt{x^2 - p}); \qquad \pi = \phi, \ \alpha.$$

In this paper we first point out a hitherto unnoticed property of $\pi(G[p])$, $\pi = \phi$, α . Then we demonstrate that the relation (1) remains valid if the symbol π is interpreted as a much more general graph polynomial.

The characteristic and the matching polynomial of the graph G can be written in the form

(3)
$$\pi(G) = \sum_{k=0}^{a} (-1)^k c_{\pi}(G, k) x^{a+b-2k}; \qquad \pi = \phi, \, \alpha$$

where $c_{\pi}(G, k) \geq 0$. Bearing in mind eq. (2) we also have

(4)
$$\pi(G[p]) = x^{pa-(a-b)} \sum_{k=0}^{a} (-1)^k c_{\pi}(G[p], k) x^{2(a-k)}; \qquad \pi = \phi, \ \alpha.$$

It is not difficult to see that $c_{\pi}(G[p], k) > 0$ for $0 \le k \le a, \pi = \phi, \alpha$.

The usual way in which the characteristic and the matching polynomials of a graph are defined can be found, for instance, in [1]. Here we put forward a less common recursive characterization of these graph polynomials which, however, is more appropriate for the present considerations.

Definition 1. If H is a graph with n vertices, $n \geq 0$, and no edges then the matching polynomial of H is equal to x^n . If H possesses an edge, say e connecting the vertices u and v, then the matching polynomial of H conforms to the recursion relation

(5)
$$\alpha(H) = \alpha(H - e) - \alpha(H - u - v).$$

Definition 2. If H is an acyclic graph then its characteristic and matching polynomials coincide. If the graph H possesses circuits then the characteristic polynomial of H conforms to the recursion relation

(6)
$$\phi(H) = \phi(H - e) - \phi(H - u - v) - 2\sum_{j \in I(e)} \phi(H - C_j).$$

Here and later C_1, \ldots, C_r are the circuits of the graph considered and C_j , $j \in I(e)$ are the circuits containing the edge e. Note that $I(e) \subseteq \{1, \ldots, r\}$ and that I(e) may be an empty set; in that latter case the summation term on the right-hand side of (6) vanishes.

Eqs. (5) and (6) provide a motivation for a generalization and unification of the concepts of matching and characteristic polynomials. We define a graph polynomial $\mu(H) = \mu(H, x)$ as follows [3], [6].

Definition 3. If H is an acyclic graph then its characteristic, matching and μ -polynomials coincide. If the graph H possesses circuits then the μ -polynomial of H conforms to the recursion relation

(7)
$$\mu(H) = \mu(H - e) - \mu(H - u - v) - 2\sum_{j \in I(e)} t_j \mu(H - C_j),$$

where t_j is a parameter associated with the circuit C_j , j = 1, ..., r. If $I(e) = \emptyset$ then the summation term on the right-hand side of (7) is equal to zero.

Comparing eqs. (5)–(7) it is evident that

$$\mu(H) = \alpha(H),$$
 if $r = 0$ or if $t_1 = \cdots = t_r = 0,$

$$\mu(H) = \phi(H),$$
 if $r = 0$ or if $t_1 = \cdots = t_r = 1,$

and thus $\mu(H)$ is a proper generalization of both the matching and the characteristic polynomials. Further, if H is a bipartite graph (H = G), then its μ -polynomial has the form (3), $\pi = \mu$. Note, however, that $c_{\mu}(G, k)$ need not be non-negative – their signs depend on the actual values of the parameters t_i , $i = 1, \ldots, r$.

The basic properties of the μ -polynomial are determined in [3], [6].

2. A RESULT FOR THE GRAPH POLYNOMIALS OF G[p].

Let the coefficients of the characteristic and the matching polynomials of the graphs G and G[p] be determined by means of (3) and (4), $\pi = \phi$ and $\pi = \alpha$. Then

(8)
$$c_{\pi}(G[p], a) = \sum_{m=0}^{a} c_{\pi}(G, m) p^{a-m}$$

and for $1 \le k \le a$,

(9)
$$c_{\pi}(G[p], a - k) = (k!)^{-1} \frac{\partial^{k}}{\partial p^{k}} c_{\pi}(G[p], a).$$

Instead of the above statement 1 we demonstrate the validity of a somewhat more general result.

Theorem 1. Eqs. (8) and (9) hold for $\pi = \mu$.

Proof. In order to simplify the notation one may consider eq. (8) as a special case of eq. (9) for k = 0. Bearing in mind (4) we immediately see that Theorem 1 is equivalent to the claim that eq. (10) holds for $\pi = \mu$:

(10)
$$\pi(G[p]) = x^{pa-(a-b)} \sum_{k=0}^{a} (-1)^{a-k} \frac{x^{2k}}{k!} \frac{\partial^k}{\partial p^k} \sum_{k=0}^{a} c_{\pi}(G, m) p^{a-m}.$$

28 Ivan Gutman

The above equality can be rewritten in a more compact form as

(11)
$$\pi(G[p]) = x^{pa - (a - b)} \sum_{k=0}^{a} (-1)^k \frac{x^{2k}}{k!} \frac{\partial^k}{\partial p^k} \left(\sqrt{-p}\right)^{a - b} \pi\left(G, \sqrt{-p}\right).$$

We prove (11) by induction on the number of edges of the graph G. Denote the number of edges of G by E(G).

If
$$E(G) = 0$$
 then

$$\mu(G) = x^{a+b},$$

$$\mu(G[p]) = x^b (x^{p+1} - px^{p-1})^a.$$

The fact that eqs. (8) and (9) are satisfied is readily verified. If E(G) = 1 then

$$\mu(G) = x^{a+b-2}(x^2 - 1),$$

$$\mu(G[p]) = x^{b-1} (x^{p+1} - px^{p-1})^{a-1} [x^{p+2} - (p+1)x^p],$$

and eqs. (8) and (9) are satisfied again. Hence (11) holds for E(G) = 0 and E(G) = 1.

Suppose now that $E(G) = E_0$ and that (11) holds for all bipartite graphs with less than E_0 edges. We show that from this assumption it follows that (11) holds for the graph G as well.

Denote by $H_1 \cup H_2$ the graph whose components are H_1 and H_2 and recall that $[\mathbf{6}]$

$$\mu\left(H_{1}\cup H_{2}\right)=\mu\left(H_{1}\right)\mu\left(H_{2}\right).$$

If H_1, H_2, \ldots, H_m are isomorphic graphs then $H_1 \cup H_2 \cup \cdots \cup H_m$ is denoted by mH_1 .

As usual, K_n symbolizes the complete graph with n vertices and \bar{K}_n its complement, i.e. the n-vertex graph without edges.

Let e be an edge of G connecting the vertices u and v and belonging to the circuits C_i , $i \in I(e)$. Then

$$G[p] - e = \{G - e\}[p],$$

$$G[p] - u - v = \bar{K}_p \cup \{G - u - v\}[p],$$

$$G[p] - C_j = n_j \bar{K}_p \cup \{G - C_j\}[p],$$

where $2n_j$ is the size of the circuit C_j . Applying (7) we have

(13)
$$\mu(G[p]) = \mu(\{G - e\}[p]) - x^p \mu(\{G - u - v\}[p]) - 2 \sum_{j \in i(e)} x^{pn_j} t_j \mu(\{G - C_j\}[p]).$$

Since both G-e, G-u-v and $G-C_j$ have less edges than G, the induction hypothesis is applicable, viz.

(14)
$$\mu(\{G - e\}[p]) = x^{pa - (a - b)} \sum_{k=0}^{a} (-1)^k \frac{x^{2k}}{k!} \cdot \frac{\partial^k}{\partial p^k} \left(\sqrt{-p}\right)^{a - b} \mu\left(G - e, \sqrt{-p}\right),$$

(15)
$$\mu(\{G - u - v\}[p]) = x^{p(a-1)-(a-b)} \sum_{k=0}^{a-1} (-1)^k \frac{x^{2k}}{k!} \cdot \frac{\partial^k}{\partial p^k} \left(\sqrt{-p}\right)^{a-b} \mu\left(G - u - v, \sqrt{-p}\right),$$

(16)
$$\mu(\{G - C_j\}[p]) = x^{p(a-n_j)-(a-b)} \sum_{k=0}^{a-n_j} (-1)^k \frac{x^{2k}}{k!} \cdot \frac{\partial^k}{\partial p^k} \left(\sqrt{-p}\right)^{a-b} \mu\left(G - C_j, \sqrt{-p}\right).$$

Substituting (14)–(16) back into (13) we obtain

$$\mu(G[p]) = x^{pa - (a - b)} \sum_{k=0}^{a} (-1)^k \frac{x^{2k}}{k!} \frac{\partial^k}{\partial p^k} \left(\sqrt{-p}\right)^{a - b} \cdot \mu\left(G - e, \sqrt{-p}\right) - \mu\left(G - u - v, \sqrt{-p}\right) - 2 \sum_{j \in I(e)} t_j \mu\left(G - C_j, \sqrt{-p}\right),$$

which by another application of (7) yields eq. (11) for $\pi = \mu$.

3. A GENERALIZATION OF (1)

Theorem 2. Eq. (1) holds for $\pi = \mu$.

Proof follows by induction on the number of edges of G and is fully analogous to the proof of Theorem 1. One has to take into account (7) and (12) as well as the identities

$$G[R_1, R_2] - e = \{G - e\}[R_1, R_2],$$

$$G[R_1, R_2] - u - v = R_1^* \cup R_2^* \cup \{G - u - v\}[R_1, R_2],$$

$$G[R_1, R_2] - C_i = n_i R_1^* \cup n_i R_2^* \cup \{G - C_i\}[R_1, R_2].$$

REFERENCES

- 1. D. CVETKOVIĆ, M. DOOB, I. GUTMAN, A. TORGAŠEV: Recent results in the Theory of Graph Spectra. North-Holland, Amsterdam, 1988.
- 2. C. D. Godsil, B. D. McKay: A new graph product and its spectrum. Bull. Austral. Math. Soc., 18 (1978), 21-28.

30 Ivan Gutman

- 3. I. Gutman: Some relations for the graph polynomials. Publ. Inst. Math., (Beograd), **39** (1986), 55-62.
- 4. I. Gutman: Spectral properties of some graphs derived from bipartite graphs. Match 8 (1980), 291-314.
- 5. I. GUTMAN, O. E. POLANSKY: On the matching polynomial of the graph $G\{R_1,R_2,...,R_n\}$. Match 8 (1980), 315-322.
- 6. I. GUTMAN, O. E. POLANSKY: Cyclic conjugation and the Hückel molecular orbital model. Theor. Chim. Acta, 60 (1981), 203-226.

Faculty of Science, University of Kragujevac, P. O. Box 60, 34000 Kragujevac, Yugoslavia (Received December 18, 1989)