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THE C-FUNCTION OF E. W. BARNES

Luciana Lupas

We consider some functional equations involving the gamma function, e.g. (1)
and (2). We prove that such equations have unique solutions in the class of
logarithmically convex functions. Such solutions give rise to some new special
functions.

0. INTRODUCTION

The aim of this paper is to find the solutions, with a certain shape, of the
functional equations

(1) Gz +1)=T(z)G(z), z € Ry = (0, +00)
(2) Fz+1)=2"F(x), zeR,.

These equations will be solved in the set LKy of log-convex (logarithmically
convex) functions of the second order on R, . More precisely, a function f: R} — R
belongs to the class LK5 if and only if

(€1, x2, x3, x4; In f] > 0

for any system z1, zo, x3, x4 of distinct points in Ry ; by [z1, z2, x3, z4; .] we denote
the divided difference at the specified points. We will show that the functional equa-
tion (1) has an unique solution G in LKy, with G(1) = 1; a similar result is established
for (2). This leads to axiomatic definitions of certain special functions. For instance,
the solution G, G € LKo, G(1) = 1, of the equation (1) coincides with the so-called
”G—function” studied by E. W. BARNESs [3], [9]. We use this characterization as the
basis for the investigation of the G—function.

Our work is motivated by the results from [1], [2], [6]. We note that W. KRULL
[5] has considered the functional equation f(z + 1) = g(z)f(z), v € R4, where
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g:Ry — Ry is a prescribed function which is continuous, log-convex on (a,+00),
a > 0, and where lim 2“7 — 1. If we select g(z) = T'(z) or g(z) = z”, then the

oo 9(@)
last condition is not verified; therefore we can not apply the work of W. KRULL.

1. THE FUNCTIONAL EQUATION G (X + 1) = I'(X)G(X)

Lemma 1.1. There exists at least one function G: Ry — R4 satisfying the conditions

(i) Gz +1)=T(z)G(x), re Ry,
(i7) G € LKy,
(iii) G(1) =1.

Proof. Let G: R4 — Ry be defined by

(3) G(z) = exp gln o — @ +(z—1)InT(z) - /lnI‘(t)dt
0

In wiew of "RAABE formula”
r+1
1
/lnF(t)dt:xln:r—x+§ln27r, x>0,
we find that G(x + 1) = T'(2)G(2) and G(1) = 1. Moreover, if p := In G then

oo

p"(z) = 2[InT(2)]" + (z — D[InT ()] = 22 ﬁ ;
k—0

that is p’' is positive on R ; therefore G € LKo.

Theorem 1.2. The functional equation G(z + 1) = I'(2)G(z), = € Ry, G(1) = 1,
has an unique solution G: R4 — Ry which is log-convex of the second order on R .

Proof. On the set of natural numbers, any solution G is determined by G (1) =
L, Gn+1)=T()I'(2)---T'(n),n=1,2,....
Likewise, for any natural number n one has

(4) G(n+x):G(x)ﬁF(x+k—1), r e R4,
k=1

If we select n = [z], x = [¢] + {z}, then (4) implies

[2]
(5) G) =G+ ) [[THa}+k-1),  2>1

k=2
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Let z € (0,1]; from [n, n + 2, n+ 1, n + 2 + 1; InG] > 0 we find
6) [Gn) G (n + D) < [G(n + )]G (n 4+ 2 + 1)), n=12...,

with equality if and only if x = 1. Since G(y + 1) = T'(y)G(y), we have

(7) Gn+2)> G+ )CTh+2)T, «e01].

Now we use the convexity of the second order of InG at the points n +x, n 4+ 1, n +
x + 1, n + 2; the inequality

m+z,n+1,n+2x+1,n+2;InG] >0

gives
€Z r—2
(8) Gn+z)<Gn+D[Cn+D]2TNn+=z)] 2 .
Applying (4), (7) and (8) we derive the inequalities
(9) mn(z) < Glo) oy (z € (0,1]; n=12,...),
Gn(x)
where

and for z € R4

D()T(2)---T(n)[C(n + DT (n + 2)]2
C(z)T(x+1)---T(z+n) '

(10) Gn(x) =

But I is log-convex (of the first order) on R ; therefore [n+z, n+1, n+2; InT] > 0
which is the same as

1—=x
2
i (2)
n+1
From (9) we conclude that the sequence (G,(z)), n = 1,2,..., z € (0, 1], converges
and
(11) lim G, (z) = G(x).

n—oo

Now we show that (11) holds for any z € R. From (10) one finds

(12) Gz +1) = D()Gn(2)[an(®)]2, =€ Ry,

with
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Using inequalities for gamma function (see [7], p. 286) we obtain

1
e_m<an(x)§1, xG(O,l]; n=12,....

Let us suppose that z is an arbitrary point in [1, +00); from (5) and (10) we observe
that

Gn(1+{z})
G(1+{x})

D=

(13) Gn(z) = G(x) [P ()]

where
[x]
Pp(z) = [[ an({z} + 5 —1).
k=2

By means of STIRLING formula

23
1< P,(z) < exp <p>, z € [1,400); n=12....

n

The equality (13) and the above inequalities show us that any function G: R4 — R4
which verifies G(z +1) =T'(z)G(z), z € Ry, G(1) = 1, G € LKy, is well-determined
by

s

(@) = lim LOTE) L)+ D0 + )]

R,.
ey Tz + 1) T(z +1n) o TERs

This completes the proof of our theorem.

In the following we shall denote by G: R4 — R4 the solution in LKy of the
equation G(z+1) = I'(z)G (), G(1) = 1. Also, we say that G is the BARNES function.
In the same time we introduce the notation

[D(n)]! := D(L)T(2) - - - T(n).

Theorem 1.3. The BARNES function verifies the equalities

G(x) = exp gmmp—ﬂéfﬁwwx—nmr@yi/mr@m
(15) 0
@+ DT (n 4 2))2
_ﬂlgréo F(a)D(z +1) - T(z + 1) (2), r € Ry,
where
r— A — X xr — 2 =
Alz) = (27) 2 expl (12 ) _ 5 D ] [T @x)
k=1
with
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and v being the EULER constant.

Proof. The first equality is motivated by (3) and by the above Theorem 1.2.
The equality G = A was established by ALEXEIEWSKI ([9], p. 264); more precisely,
it was shown that A:R; — Ry is an integral function which satisfies A(1) = 1,
A(z + 1) = T'(z)A(z). On the other hand A € LKjy; therefore, Theorem 1.2 enables
us to assert that A = G.

2. THE FUNCTIONAL EQUATION F(X +1) = XX F(X)

Lemma 2.1. There exists a function f: Ry — Ry with the properties

(i) Flx+1)=2"F(z), z e Ry,
(77) F € LK,
(iii) F(1)=1.
Proof. If
-1 ’
(16) F(z) = exp % — gln 27 + /lnI‘(t)dt , ze Ry,
0

then it can be easily shown that F(z + 1) = 2" F(z), F(1) = 1; also
d3 d?

that is F € LK.

Theorem 2.2. The equation F(xz + 1) = 2"F(z), x € Ry, F(1) =1, has an unique
solution F: Ry — R4 which belongs to the class LKs.

Proof. Let z € (0,1); from the fact that the inequalities [n, n + 2, n + 1, n +
z+1;InF]>0and [n+z,n+1, n+xz+1, n+2;InF] > 0 are verified, we have

n{z—1) (n4a)(z—1)
Fin+1)n=™ 2 (n+2) 2 <F(n+az)<
17
( ) x(n+1) (x—2)(n+x)
<Fn+1)n+1)"2 (n+2x) 2 :
But
(18) F(n+a)=F(x) [[+k-1)""

k=1
Next, define F,,: Ry — R4 by

. z(n+1) x(n+x)
122...p"(n+1)" 2 (n+x)

l..”IJ(x + 1):1;+1 . <$ + n):1;+n

Fn(a:) =
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From (17) and (18) we obtain

F(x)

Qn(m) <

where .
(77, +1,)n+:1; 2

Qn<$) = ” I

(7’1, + 1).L(n+1)nn(1 x)

Taking into account that [n — 1, n, n +2; tInt] > 0, n > 2, we find that

<1, z € (0,1].

Therefore (F,,(x))52; converges on (0,1] to F(z); likewise F,,(1) = 1. On the other
hand

NJ—

(19) Fp(z 4+ 1) =2"Fp(z)[Cn(x)]

with . (-1 {ntat)
B (77, + 1)77 (77, + T + 1) r— n—+ur
Cale) = (n 4 x)v(nte) ’ z € Ry

For z € (0, 1] one has

while for z € (1, +00)

33

1< Cp(z)<e
Now we observe from (18) and (19) that
n

[[cn(ay+i-1)  2>2

Jj=2

Fu(z) = F(I)m

Then the above inequalities give F(z) = lim F,(z) for every z € (1,400). In

n—o
conclusion, the equality

:I?(n—i—l) r(n-|—1’)
(20) Fla)= fim P D" 2 (nde)” 27
= lim
* n—o0 xf(m+1)iﬁ+1...(m+n)r+n
where [n"™]! = 1122...n" is verified for all positive x; this completes the proof of the
theorem.

The equalities (15) and (20) enable us to prove the following proposition.

Corollary 2.3. If F:R; — R, F(1) = 1, is the solution in LKs of the functional
equation F(x + 1) = 2"F(z), » € R, then

F(z)G(x) =T (), r € Ry,
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where G: R4 — Ry is the BARNES function.

here.
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