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744. ON THE APPROXIMATION OF THE LOGARITHMIC FUNCTION
BY SEQUENCES OF ALGEBRAIC FUNCTIONS (I)*

1. Lazarevi¢ and A. Lupas

When the logarithmic function is approximated by sequences of algebraic
functions, similar questions can be posed as in the case of other similar problems.
So, for example, it is interesting to; investigate the possibility of two-sided
approximations in the same class of functions, the degree of the approximation,
the speed of convergence of the approximation sequences, their monotony, and so on.

In this paper we construct a few sequences of algebraic functions by which
we approximate the logarithmic function. We also point out some properties of
those approximations.

I

Let us suppose that 4. ={4,(X)}, B: ={B,(0)}, F:={C,(x)},n=1,2,...
are three sequences of functions, defined by

. _ 2n(xtn—1) . n(xr—1)
4, () (x—1) (' +1)° B, (x): (x—1) x/2n

(1
_a(xr-1) (x4 1)
T =D @y’

C,(x): n=1,2,...; x>0, x#1.

Theorem 1. The above sequence 4 is increasing and the sequences 98 and G
are decreasing and at the some time we have

) A,,(x)<‘—’lil<cn(x)<3"(x) n=1,2,...; x>0, x£1.
-

Proof. For an arbitrary, but fixed x<(0, 1)U(1, + ) let us define
the function ¢: =¢,:(0, 1)> R by

2(x¥—1)

3) ‘P(}’)=(Px(J’)=(x_l)y—(ﬂ_’_1)-

Then we have

4) A,,(x)=cp(—nl—), n=12,...

* Presented by N. GHIRCOIASIU,
Ovaj rad je finansirala Republi¢ka Zajednica Nauke Srbije.
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Approximation of the logarithmic function I 51

For the function ¢ we find that

) ¢ ()= 2 2Ry (o) 2 2@yinxo oD )
x—1 Yy (xr+1) x—1 Y(xr+1)
_2x2(InxY—(x¥—1)x"Y)
P(x—1 ¥ +1)?

Now we will use the following two known inequalities (see for example
(1; p. 273)

(6) 2 e 1 40, 11
t+1 =1 V1

Introducing the substitution 7#=x?> into the second of those inequalities, we
obtain

’ Inx»—(x»—-1)x~¥
M

xy—1

<0, x>0, x#1.

From this and from (5) we conclude that

(3) ¢ (<0, y>0.
Further on, taking into account that 1/(n+1)<1/n, we obtain

) <p(;%)>cp(%) , n=12,...,

wherefrom and from the above it follows that
(10) A,(X)<A,., (), n=1, 2,...; x>0, x#£1,

holds true. In such a way we have obtained that the sequence 4 is increasing.
Putting #=x!/" is the first of the inequalities (6) it follows that
Inx

(11) A,,(x)<——~1, n=1,2,...; x>0, x#1.
X

In connection with the sequence 3 we can consider the function
¢ =1{,:(0, 1/2)—> R which is for every x& (0, + o) defined by

. ox—1
(12) P =9:0) ==
Now, we have
(13) B, (x)=—— ¢(L\, n=1,2,....
" 2(x—1) Zn/

From (12) it follows that

(14) o (="t

2y 1
Inx’—Z ,
x¥ y? x> +1

Putting ¢=x? into the first of the inequalities (6), we conclude that

1
(15) Loy

-1 xw+l’

x>0, x#£1.

4*



52 I. Lazarevi¢ and A. Lupas

Introducing 1/x instead of x, it can be easily seen that if our inequalities are
valid for x&(0, 1) then those inequalities are valid also for x&(l, + o).
Hence, it is sufficient to prove our statements only for one of those intervals.
From (14) and (15) it follows that

(16) V' (3)>0, x&(l, + o).
By the use ot the above result and the equality (12) we obtain
1 1 1 1

-~ ’ ’ 13
an 2(x-1) ¢(2n)>2(x—1) ¢(2n+2) x>0, x7
..C.
i
(18) B, (x)>B, (%), n=1,2,...; x>0, x+£1.

Hence, the sequence 43 is increasing. Putting t—x”" in the second of the
inequalities (6) we have

1 1
19) n_x<

x—1  xim’

which, on the basis on what we have said above, can be written in the form
(20) ln—"<B (), n=1,2,...; x>0, x£1.
x_.

The sequence % is more complicate than the other sequences but the
approximation obtained by the use of that sequence is better than the appro-
ximation obtained by the use of the sequences 4 or 2.

Let us consider the function f=f,:(0, 1/3)— R defined by

@D fO)=fo(y): =7 D@D

¥ (X3 4+ x7)

for every, but fixed, x&(0, + o). Now, we have

.1
(22) W=/ =12
The function f can be transformed in the following way
(23) fO) = (—x~D)+(@—x—¥) sh2t+sht

y(xr+x-%) ych?  J|i=ylnx

=y‘1 (2sht+th t)1t=ylnx:
wherefrom we have

(24) =y (),
where
25) D)= —2sht—tht+2cht+ch 28)t|—yinx.

Now, we shall examine the function ® (for x>1 and y>0).
First, we find

(26) hm O(y)= 2 11m (tcht—sh#)+ lim (¢ch—2¢—th#)= + co.

t—+4 00
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Further we have

27N Q') =2t(1—-ch3#)shtlnx|—yinx
wherefrom we conclude that

(28) ' (<0, x>1, y>0,
and consequently

29 O(y)>0(0)=0, x>1, y>0,
In virtue of (24) and (29) it follows that

(30) ffM=>0, x>1, y>0.

Further on, since we have

G1)  lim f()= lim @RI RDl=yinx _ 1 0 chrtch-2)lnx=31nx,
y—>0+ y—>0+ y 1—0-

we obtain
(32) JO)> lim f(3)=31n x>0, x>1, y>0.
y—0+

From what we have said about we can conclude that the function fis increasing
for every, but fixed, x& (1, + o).

For x&(0, 1), y>0, the sign in the inequalities from (28), (29), (30)
and (32) are contrary, wherefrom we conclude that the function fis decreasing
for every, but fixed, x& (0, 1).

If, in addition, we define the function F by

(33) F(x, y): =IO o, x 1 y>0,
3(x—-1)

then, on the basis of (32), we infer that

(34) F(x, )>0,

as such as we conclude that the function F is increasing in variable y(>0)
for every fixed x>0, xs#1. Since the inequality 1/3(n+1)<1/3n holds fox
every n<=N we have

(33) Cpn@=F(x :

1
i~ F [ R ’ =1, 4,...3 y .
3(n+1))< (x 3n) C,(x), n=1,2 x>0, x£1

This proves that the sequence @ is momnotone.
. . 1
To prove that the sequence approximates the function -—nxl from above,
X—
we will use one more well known inequality (see for example [1; p. 273]):
It _1+) ¢
—< ,
=1 47y
Introducing the substitution #=x"" into the above inequality we infer that
Inx n (14 xt/3)
3 ;
( 7) xl/n__l xl/n+xl/3n

(36) t>0, r#1.

x>0, x#1.
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—1

C . . 1 . . ..
Multiplying the last inequality by p which is positive for x>0, we get

Inx _n("-— 1)(1+x‘/3")
x—1  (x—1) (x!n 4 xi/3m)

(38) C,(x), n=1,2,....

Finally we shall prove that the terms of the sequence give % us stronger
bounds of the logarithm-function than the bounds we can get from the
sequence 73. In this direction let us observe that the corresponding terms of
those sequences satisfy the relation

(39) C,0)=—2"*1 _p (v, n=1,2,....

X1/ 4. x—1f6n

So, it remains only to prove that the inequality
x4 1
xl/2n 4 x—1/6n

(40)

is valid for x>0. Indeed, if we take x'/"—¢, the last inequality can be
writen in the following form

41) #B-DH@E-H=0

which obviously holds for every £>0. The equality sign occurs if and only if
we have t=1. Hence, we have

42) C,(x)<B,(x), n=1,2,...; x>0, x#1.

This proves our theorem. [

If we extend the definition of the function Eﬁl at the point x=1, by
Y—

using the analytic continuation, then we can obtam the equality sign in the
inequalities from (2).
It is interesting to note that on the basis of the inequalities

(43) A, (x )<M<B (),  n=1,2,...; x>0, x£1,

C . .. x—1 .
by multiplying with T we can write
x —

2 In x 1
< ‘ )
(44 xUnyl np(xtn—1) xtm
so that therefrom it follows immediately that
45) lim p(x'"—1)=Inx, x>0, x#1.
n—+ o0

The first terms B, (x) and C,(x) of the considered sequences occur in
the papers by J. KARAMATA [2] and D. BLANUSA [3] where they have proposed
the inequalities

(46) Inx V' ~B,(x), x>0, x#£1,
and
(47) ﬂf‘_q(x), x>0, x#£1.

x—1 x+17~
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On the other hand, the first term of above sequence 4 reduces to the
function 2 i.e. this first term is reduced to the well known lower bound in

X+
the inequality from (6).

Among the properties of the considered sequences we shall turn our
attention only to the behaviour of their terms in the case when x converges
to 0+ or 1 or + co. We think that the behaviour of these function, beside
monotony, is of great importance.

By the use of L’HospiTAL’s rule we find

Inx
4, () x A, (%) A== 1
lim &2~=2pn, Ilim —==2pn, lim = — ,
x—04+ x° x>t o0 x0 x—1  (x—1)? 12 n?
Inx
B,(x) B, (%) B3
48 lim 22—y lim 222 g fim— T
(4%) x—>04 XYM P imte XU 7 xl (x—1)? 242’
C, (%) Inx
x —— —
lim ©2® _, fim XS @ _ 0 tim T x-1 1
x—04 x~3n ’ x—>tow X7 ’ x> (x—1)* 1620 n*
1I

The sequences of approximation functions which should be used for
approximation of the logarithmic function, can be constructed sometimes
starting from some well-known inequalitics for the logarithm-function. But,
our opinion is that the above obtained results give us better approximations
than the approximations which can be obtained in such a manner. In the following
text we will concentrate our attention to such an example.

D. M. SIMEUNOVIC proved in [4] the following inequalities

1 1

(49) (————”(”“"’)”‘1<‘“”““”<( bot—ar”! );,b>a>O;P>l.
bp—qpP b—a @—1 (b—a)(@b)r-?

Those inequalities, as well as some another from that paper, can be used to
form the minorant or majorant sequences of the function llxi If we

x—
substitute b=x(>1), a=1 in those inequalitics and after that we introduce 1/x
instead of x, we obtain the following inequalities

1 1

50 _P(X—D)H Inx ( ol ); 0, x#1; p>1.
(50) (xP—l <o na-ner) @ *7 x#Lp>

The s:zcond ot the above inequalities is explicitely stated in [4]. For some
particular case of p we can obtain the sequences of approximation functions
which posses appropriate properties. Now, we shzll turn our attention to an
example which is selected with respect to its boundary behaviour when x— 0+
or 1 or + 0.
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Theorem 2. Let D:. ={D,(x)} and §: ={E,(x)}, k=1, 2,..., be the sequences
of functions, defined by

[+ D =DV
1) De@: _(k (x(k“)/k—l)) ’

k (xl/k_ 1))k/(k+ 1)

E, (x): =((x~1)x‘/k , k=1,2,...; x>0, x#1.

Then, the sequence 9 is increasing and the sequence § is decreasing. Further
on the inequalities

(52) D, (x)<ﬁ-’§<Ek ®), k=1,2,...; x>0, x£1,
-

are valid.

Proof. Functions from (51) can be obtained from (50) for p=(k+ 1)/k,
k=1,2,..., so that the inequalities from (52) are valid on the basis of the
results of the paper [4]. It remains only to prove the monotonicity of the
sequences P and &.

For a fixed x&(0, 1)U(l, + o) let us define the function ¢: =g, ()
(1, 2]— R by

L (Y =D \VO-D

(53) O

Then we have

(54) ¢(1%1)=Dk(x), k=12,....

Let x>1 be fixed. By a direct calculation we find

(55) 1n<p(y)=-—1—1(1ny+ln(x—l)—!n(x’—-1)),

y_

wherefrom it fcllows

(56) P O)=0-1D"2000),

where

(57) $) =1L 2=Dhx o -1 +n-1).
¥y xy—1

The derivative of the function ¢ can be written in the form
TSV il T 25 (x? — 1)2

(58) ¢ (y)—yz(xy—l)z(y’-xyln x—(x —1)%).

Using the substitution x”=t¢ into the inequality from (6) we find that
(59) P ln?x—-(x*—1)2=¢tIn?t—(t—1)2<0

(because of the second inequality in (6) we have Vilnt<t—1 for t>0). So,
in that way we conclude

(60) (<0, ye(,2]
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Now, in virtue of (60) and (57), it follows

(61) b<d (D=0
for y>1, so that, on the basis of (56) we conclude
(62) ¢’ () <0.

In such a way, since the function ¢ decreases, and since (k+ 1)/k>(k+2)/(k + 1),
we have

63) Dk(x)=<p(’%)<<p(,’§j—f)=0kﬂ(x), x> 1.

If we introduce 1/x instead of x we see that those inequalities hold true also
for x&(0, 1). This proves the monotonicity of the scquence 2 i.e. we have

(64) D, ()<Dp,, (), k=1,2,...; x>0, x#1.

In order to prove the monotonicity cf the sequence we shall considir
the function g: =g,(»: (0, 1] R, defined by

—_ 1 1/( + 1)
(65) g(): = (f—)f’fl)xj) g

for every fixed x&(0, )U(1, + o). The functicn just defined generates the
sequence & because of

(66) g(%)zEk(x), k=1,2,....

For every, but fixed, x>1 we can write

(67) lng(y)=%(lny+1n(xy—l)—ln(x—1)——lny),
y

wherefrom we have

(68) gM=0+D2gMh),

where

(69) h(y)=14+L4202D0x 4 -1+
y x¥—1 X

By calculation of the derivative of the function A and using the inequality
(6), we get

(70) K ()= - Wyjl; (% * In2 x + (x* — 1)) <O0.

¥ —
Further, we conclude that 4 is decreasing and consequently that
1) hO)>h()=2+E02E50, ye(, 11

In virtue of (68) that means that
(72) g0>0, ye(1],
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i.e. the function g is increasing. Since 1/k>1/(k+1), it follows

1 1
13) E()=8()>8 () ~Benn 0 x>l
Respecting the above comment in connection with the intervals (0, 1) and
(1, + ), we conclude in this case also that the following is true

(74) E()>E,. (0, k=1,2,...; x>0, x#1.

This proves the monotonicity of the sequence &. [J
At the point x=1 the functions D, (x), E,(x) and l—nil posses the limit
x.—

value (=1). Hence, the mentioned functions are such that their definition can
be completed in such a way at x=1 that the inequalities from (52) are reduced
to equalities (at x=1).

For k=1 the inequalities from (52) are reduced on inequalities from (6).
Herefrom it can be seen that the sequences ) and & give us bether approxi-
mations of logarithmic-function then one which is given by clasical inequalities
from (6).

The behaviour of the functions D, (x) and E, (x) at x=0 and x= + o0
is given by the following values

lim D) _ (k-+—1)k iim D (Iil)k

(75) x—0+ x° k ’ X4 00 x° k ’
k k+1

lm EW T i 2B

x—0+ x~Hk+D) x—>+ o0 x1/(k+1) B

Examination of the behaviour of the logarithmic-function with respect to the
sequences 9 and & in a point x =1, needs som= more detailed (i.e. complicated)
calculations. Those results we shall formulate in the form of the following

‘Theorem 3. The limit values, which are different from zero,

Dy () Inx
()
(76) 4. —lim x—
x—>1 (.?C—l)‘x
and
B () ———
(77 e =lim— =2 x>0, x#1,

exist if and only if «=08=2 and in that case we have

k+1 1

(78) dk=—m, T ak’

Proof. In the proof which follows we shall use generalized BERNOULLI'S
polynomials. For those polynomials the following formula

1a ezt

(79) i

+% 4k
=3 =B, |1<2m,
k=0 k!
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is valid (sez for examle [Sk' pp 18—22]). As it is usual we shall write B, (0)=B,@.

a

Hence, we have B (”)~;‘%{( tt ; )} so that B, @ is a polynomial in a of
et— =0

degree k. For a= 1 we have (an ordinary) BERNOULLI’s polynomials B,V (z) =B, (2)

and therefore for z=0 we obtain BERNOULLI’s numbers B, (0)=B,.
Let us denote

Dy, (x)—x_—T

_nx pmm—*1
(80) f(X). _x—l’ a( ) 1)“‘ Pk,a(X). (x—=D=

Using the substitution Inx=1¢ we can writte
k+1  \F
+
(81) t 1 to\® t -k k !
X) = s X) =— , D ,(x)=
fo- &0 2e-5) =

ek—l

By the use of the formula (76) for 1=0, we get

e 132 pw
f(X')= g;!_Bv’ ga(X)—;\,go:!- v e

(82)
T2k 1y o
(—k), (k) — il
D, (x) = z B b ( ) Z B, EO =
where
v k+1y
(83) Cor=> (”)(%) BCR B,
ico\J
On the basis of what we have
(34) P o) =(Dy () —f (%)) g (x)=- Z Yv ke Z B‘“’
where
(85) Yv,kzcv,k_Bv‘
By multiplying the above series we can writte
1 XL
(86) Pre@= 3 ST 00 B,
where
@®7) T B=3 () B2
i=0

Now, using the tables of the corrcsponding values of BERNOULLI’s polynomials
and numbers (see for example [5]), from (82)—(87) we find

Cox=1y Crr=—r, c=""L;
0,k ’ 1L,k 2 H 2,k 12k ’
k+1
88 =0, =0, ="
(88) Yo.x Y1k Y2k 2k

T k=0, I'(l, k=0, TI'(, k)_--’liz’“—k1
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It can be seen now that I'(2, k)#0(k=1,2,...). In such a way on the
basis of (84)-—(88) we can write
+ o

t
zrr(v,k)

1%

89) |1m Pk » () =1lim?®

x—>1

For the above limit value, to be different from zero, it is neccessary to
be a=2. In that case we have

(90) dk—llmPka(x)—hmsz(x)——%-'_—kl.,

In connection with the functions E, (x) we will proceed the similar
method of concluding.

Let us denote

Inx

1 Ek(x)*——l'

(91) G =—, Qpa()=—— o,
F (x—1) ' (x—1)8

and let us introduce again the substitution Inx=¢t If we make use the
development from (78) we can write

k+1
K
t k41
02  E®- [ (=)
t + oo oo k t 4o
5 ) gl S
v=0 V! k¥ v v=0 V! v v=0 V! hidadd
where . k)
-+ 00
=S ("Y1l gl w T
93) '"*k—,zo(,-)kaJ( )Bv_,( )

k
In the end, by the use of the development of the function e k+1 definitely
we have

+% 4y 1% 4
©4) @)= 3 LS s 3 b
where
_ v v (_l)v—i
95) uv,k—go( g

Now we obtain

O s ) = (B, () — f(x))ga(x)——E (V’v,k B): Z B‘B’=— thM(v’ k),

zB
where we have

o7) M@, k)= z( ) i~ B) B2
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Using again the tables of BERNOULLI’S polynomials from (93)—(97), we
calculate

e =1, m . — —k+1 m 28 —TK 4 4k+1
e Y 2 12k (k + 1)
(€0 b om0 1 _2k+l
0.k =Y M1k 5’ Mo, TV

M©, k)=0, M1, k)=0, M(2,k)=ﬁ_

Since M, #0(k=1,2,...), we can write further on that

1 /7¢2 1 t3
=—(—t—M@G,k+...].
©99) Qs @ =Gt MG 0+.)
For 8=2 we will have limQ, ;(x)70 and in that case we find
x—>1
. . 1
(100) e.=limQ, ,(¥)=limQ, ,(x)=—. O
x—>1 x—1 24k

On the basis of (48), (75) and (78) it follows tha the sequences 4
and ¢ gives us better approximation of the logarithmic function at the
points 0, 1, + co then the sequences 33, D, &.
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O APROKSIMACIJI LOGARITAMSKE FUNKCIJE NIZOVIMA ALGEBARSKIH
FUNKCIJA (D)

I. Lazarevié i A. Lupas

Karakteristi¢ni tok logaritamske funkcije onemoguéava njenu dobru jednostrnu aprok-
simaciju na (0, +o0) pomocéu funkcija iz uqbiéajenih klasa. U ovom radp posmatra se
aproksimacija logaritamske funkcije izvesnim nizovima algebarskih funkcija (nizovi A4, 3, €,
9, ¢). Dokazuje se monotonija ovih nizova. Na osnovu toga jednostranom aproksimacijom
sa donje odnosno gornje strane vr§i se ukljeStenje logaritamske krive na celom njenom
domenu definisanosti. Nadalje dobijeni su rezultati asimptotskog ponaSanja pomenute aprok-
simacije u karakteristiénim tatkama logaritamske funkcije.



