740. CONTINUOUS LINEAR OPERATORS DEFINED ON THE CONE OF FUNCTIONS CONVEX WITH RESPECT TO CHEBYSHEV SYSTEM*

Ljubiša M. Kocić

- **0.** In this article, the necessary and sufficient conditions for linear continuous operator A defined on the space C[a, b], in order that the implication (4) holds, are given. In such a way, this result extends, in the case of Chebyshev system with two terms, some theorems of S. Karlin and A. Novikoff [1], J. TZIMBALARIO [2] and P. M. VASIĆ and I. B. LACKOVIĆ [3].
- 1. Let C[a, b] denotes the space of all continuous real functions defined on [a, b].

Definition 1. We say that a function $f \in C[a, b]$ is convex with respect to Chebyshev system $\{u_0, u_1\}$ if (see [4])

(1)
$$\begin{vmatrix} u_0(x_1) & u_1(x_1) & f(x_1) \\ u_0(x_2) & u_1(x_2) & f(x_2) \\ u_0(x_3) & u_1(x_3) & f(x_3) \end{vmatrix} \ge 0$$

for every $a < x_1 < x_2 < x_3 < b$. The cone of all f satisfying (1) will be denoted by $C(u_0, u_1)$.

In [6], the following theorems are proved:

Theorem 1. Every function from the sequence

(2)
$$\varphi_n(x) = A_0 u_0(x) + B_0 u_1(x) + \sum_{k=1}^{n-1} m_k \varphi(x; x_k),$$

where A_0 , B_0 are arbitrary real constants, $m_k \ge 0$ (k = 1, 2, ..., n-1), $a < x_1 < x_2 < \cdots < x_{n-1} < b$,

(3)
$$\varphi(x; c) = \begin{cases} 0, & a \leq x \leq c, \\ w_0(x) \int_c^x w_1(t) dt, & c \leq x \leq b, \end{cases}$$

where w_0 and w_1 are positive functions and w_0' , $w_1 \in C[a, b]$, belongs to the cone $C(u_0, u_1)$.

Ovaj rad je finansirala Republička Zajednica Nauke Srbije.

^{*} Presented by I. B. LACKOVIĆ.

Theorem 2. Every function $f \in C[a, b]$ continuous from the right in x = a and from the left in x = b is an uniform limit of the sequence of generalized polygonal lines $(\varphi_n)_0^{\infty}$ defined by (3), where A_0 , B_0 , m_k and $\varphi(x; c)$ have the same meaning as in the theorem 1.

2. Let the space C[a, b] be normed by the usual norm $f = \max_{a \le t \le b} |f(t)|$, and let S(E) be a normed subspace of all real functions defined on E, with the norm $||f||_E$. Further, let $A: C[a, b] \to S(E)$ be a linear, continuous operator. In other words, for every $f, g \in C[a, b]$ and arbitrary $\lambda \in R$, we have $A(f + \lambda g) = Af + \lambda Ag$, and for every $f \in C[a, b]$ for which exists a sequence $(f_n)_0^\infty$ so that $||f_n - f|| \to 0$ when $n \to \infty$, it always holds $||Af_n - Af||_E \to 0$.

Now, the following theorem is valid.

Theorem 3. Let the linear and continuous operator A: $C[a, b] \rightarrow S(E)$ be given. Then, for every function f, the implication

$$(4) f \in C(u_0, u_1) \Rightarrow Af \geq 0$$

is valid if and only if A fulfils the following conditions:

(5)
$$Au_0 = 0$$
, (6) $Au_1 = 0$, (7) $A\varphi(x; c) \ge 0$ for every $c \in [a, b]$, where $\varphi(x; c)$ is given by (3).

Proof. Suppose that for every f implication (4) holds. Then, as $\pm u_0$, $\pm u_1 \in C(u_0, u_1)$ we have $\pm Au_0 \ge 0$ and $\pm Au_1 \ge 0$, in virtue of homogenity of A, so (5) and (6) are valid. It is proved in [5] that the function $x \mapsto \varphi(x; c)$, given by (3), for every $c \in [a, b]$ belongs to the cone $C(u_0, u_1)$, thus, on the basis of (4), (7) holds true.

Let's prove the sufficience of the conditions (5)—(7). Namely, for every $f \in C(u_0, u_1)$, there exist, in virtue of the theorem 2, the constants A_0 and B_0 , so and the sequence $m_k \ge 0$ (k = 1, 2, ..., n-1) so that

(8)
$$\lim_{n\to\infty}\varphi_n=f.$$

On the basis of continuity of A and (8)

(9)
$$\lim_{n\to\infty} ||A\varphi_n - Af||_E = 0$$

holds.

On the other hand, if we apply the operator A on both sides of (2), in virtue of his linearity, we get

$$A \varphi_n = A_0 A u_0 + B_0 A u_1 + \sum_{k=1}^{n-1} m_k A \varphi(x; x_k),$$

which, using (5), (6) and (7), takes the form

$$A \varphi_n = \sum_{k=1}^{n-1} m_k A \varphi(x; x_k).$$

The constants m_k (k=1, 2, ..., n-1) are, by the supposition, nonnegative, so from (9) we have $Af = A(\lim \varphi_n) = \lim A \varphi_n \ge 0$, i.e. (4) holds.

REMARK 1. The set $W=C(u_1,u_1)\cap\{-C(u_0,u_1)\}$ is the maximal vector subspace contains in the convex cone $C(u_0,u_1)$, i.e. (see [6]) for every α , $\beta\in\mathbb{R}$, $\alpha u_0+\beta u_1\in W$. Then, the conditions (5) and (6) can be rewritten in the form

$$AW=0.$$

In other words, (10) means that W is a subset of kernel of operator A.

REMARK 2. S. KARLIN and A. NOVIKOFF, the authors of [1], consider also the implication (4), but indeed an arbitrary linear continuous operator, they restrict themself only on the

functionals of the form $\int f \, \mathrm{d} \mu$. However, their results are more general in the other sense.

Namely, they permit the convexity with respect to the system $\{u_0, u_1, \ldots, u_n\}$ where n is an arbitrary natural number.

REMARK 3. J. TZIMBALARIO in [2] find out the necessary and sufficient conditions that the implication

$$(11) f \in C(u_0, u_1, \ldots, u_n) \Rightarrow Af \in C(u_0, u_1, \ldots, u_n)$$

holds, for every $f \in C[a, b]$, where A is an arbitrary continuous operator. It is clear that, for n=1, our implication (4) contains (11).

REMARK 4. The statement of theorem 3 extends the results obtain in [2] and [5]. Thus, for $u_0(x)=1$, $u_1(x)=x$ we have the theorem 2 in [2] and for $u_0(x)=\sin rx$ (or sh rx), $u_1(x)=\cos rx$ (or ch rx) our theorem 3 reduces on the result of [5].

REFERENCES

- S. KARLIN, A. NOVIKOFF: Generalized convex inequalities. Pacific J. Math. 13 (1963), 1251-1279.
- 2. J. TZIMBALARIO: Approximation of functions by convexity preserving continuous linear operators. Proc. Amer. Math. Soc. 53 (1975), 129—132.
- 3. P. M. VASIĆ, I. B. LACKOVIĆ: Notes on convex functions II: On continuous linear operators defined on a cone of convex functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. № 602—№ 633 (1978), 53—59.
- 4. S. KARLIN, W. J. STUDDEN: Tchebycheff systems: with applications in analysis and statistics. Russian translation, Moscow 1976.
- I. B. LACKOVIĆ, LJ. M. KOCIĆ: On continuous linear operators on the class of generalized convex functions. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. (in print).
- LJ. M. Kocić: Approximation theorems for function convex with respect to Chebyshev system (in manuscript).

Elektronski fakultet 18000 Niš, Jugoslavija

NEPREKIDNI LINEARNI OPERATORI DEFINISANI NA KONUSU FUNKCIJA KONVEKSNIH U ODNOSU NA ČEBIŠEVLJEV SISTEM

Ljubiša M. Kocić

U radu su dati potrebni i dovoljni uslovi za linearni operator A definisan na prostoru C[a, b], tako da važi implikacija (4), gde je $C(u_0, u_1)$ konus funkcije konveksnih u odnosu na ČEBIŠEVljev sistem $\{u_0, u_1\}$.