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721. A WEIGHTED-ARITHMETIC-GEOMETRIC MEANS INEQUAL‘/ITY*

A. M. Fink

We obtain an infinite class of generalizations of the arithmetic-geometric means
inequality in which weights less than or equal to 1 are inserted in the arithme-
tic mean

The arithmetic-geometric means inequality has been generalized in a va-
riety of ways. FINK and JODEIT [1] have shown that for x,>0

n
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=1 k=1 k=1

i
unless all x; have the same value, if ¢ is replaced by
) g,X)=1-(1-x)" 0=x=1; g,(x)=1, x>1.

If g(x)=1, then (E)) is the usual arithmetic-geometric means inequality. Observe
that in general, the products in the left hand side of (E,) are less than 1 unless
x; is the smallest among x,, ..., x,. One wonders what special properties of
g, are necessary for (E,) to hold. It is our purpose to construct a family of
functions for which (E,) holds and which includes g(x)=1. The FINK-JODEIT
result does not contain this special case.

The class of functions considered for the inequality should give equality
when all the x; are the same. This requires that ¢ (1)=1. The other conditi-
ons are modeled after some of the properties of g,.

Let g, if

i) g®+1D exists on (0,1) and is in L (0,1);
i) q0)=0 (i=1,...,n-1), g(1)=1;

t
iy [x(—1)ygm+H(x)20, 0<t=1,
1]

1
(=17 [ [ xqo» () dx—q® (1)) 20;
]
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iv) ¢(0)=0, g(x)=1 for x=1.

Note that ¢,&0, if m=n, and ¢(x)=1£0,.
Theorem. For every q&Q,, (E,) holds for x,>0 unless all x;, are the same, in
which case equality holds.

To facilitate the proof we introduce the notation
¥) Xp=x" if ' x=20, x7. =0 if x<0,

with the convention that 0°=1.

We divide the proof into two parts. Firts assume that ¢®+Y(x)%0 on
(0,1). Then it may be verified in turn that for 0<x<1,

1

1
®) g®(x)= [ g+ (1) dr— g™ ()= [ ¢—x%dr (),
0

X

where dA(¢)= —¢™(1)3, +¢®+V(r)dt and §, is a point mass at 1. Using the
zeros of g@ at 1 it follows that

1 1
' - (=nH=-! n—2 (—1)-!
= —xyr g ) ~—L dy= - ™) 2
A A f(u SR T f(u AN e
. x 0
Combining (3) and (4),

1 1 .
'(5) 7' ()- f =2 du [ -uft () %
0

0

f YOR 2),f(t—u>+(u X du

t
(r— x)(ir f (u—xy"2du

- of da(r) -(n_z)'

1
=f<t—x)+‘dx<t>( D
0
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Finally

s 1 1
- , - 0 _an—t (=1
©®  a@- f 4 () dx +4(0) = of (s— )} dx of - O ZE +a 0)
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Interchanging the order of integration we finally get

1
™ q(s)= f k (s, £)du.(¢),
) .

where
du (1) =g (0) 5, +- ‘) ()

and
8 k (s, t)=nf(s—x)f’,.(t—x)'.’[ldx=t”—(t—s)'; 0=t 51
0

and k(s, t)=k (1, t) when s=1.

The last condition k (s, )=k (1, #) extends the function ¢ to [1, ) so that
q(s)=1 there. Now let x,, ..., x, be given positive numbers not all the same.
The inequality (E) is equivalent to

) f f(_z %, 0)=n 15 Tk 1) i) - -due)>0,

The integrand is non-negative. To see this, note first that k (x, O)%O, and
second that if #,>0, then k(x, t)=gq,(x/t) k(1,1), see (1). Thus the integrand

has a factor T k(1, ;) with the other factor being
k=1

n

©) 3% n 0.

i= I

) _n;!:iII =G (t, ..., 1)

Now g, (x/t) is decreasmg intsothat G(¢,,...,¢,) is larger than G(I,...,1).
This quantity is positive by the FINK-JODEIT result. If the measure dp =0, this
would complete the proof. However, one can verify that in this case g (x) 2 q, (x)
and the proof is more direct.
1
The one dimensional case is a motivation for what we do. If f fg=0 is
0 .
to be shown and f(1)=0 with f'<0, then we do not need require g=0. An

x

integration by parts shows that if we take G (x)= f g then
0

1 1 '
[re=ra)Gc )+ [ G @) (~f (x)=0 if only G(x)=0
0 0

on [0, 1]. This allows g to be negative near 1 if it is sufficiently positive near
0. The multi-dimensional case is analogous but the integration by parts is
awkward.

(10) : Bt, é:l glq"(x,tk)ql(f;)(%)(_éy)éo
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and this holds even at ¢, =0 since qn( x’; )El if ﬁgtk. Thus G decreases in
Xi I Xi

the coordinate directions and has its minimum at (1, 1, ..., 1). This implies
that there is a measure v such that

(11; G, ..., t)—f fdv(sl,...,n f fH(s £)%dv (s).

The outline of the construction of this measure follows the completion of the
proof of the theorem. Recalling that k (1, £)=1¢" we can rewrite (I,) as

1 1
f...fG(tl,...,t,,)Htk"dp(tl)...dp,(t")go
k=1

0 0

which using (11) and an interchange of order of integration is equivalent to

1 1 1 1
(12) v fav [ [ TTG- 0% T du- - -dut) 2o,
(;[ J of Of i=1 j=i .

the inner n-fold integral is fI f e du (2).
i==1
Thus (12) is a correct inequality if
(13) fst"dy.(t)_Z_O.
0
Since dp.=gq(0)3, +(-1) [g+V (1) dt— g™ (1) §,] the condition (13) means that

(—1)"ftnq<n+l>(t)dtgo 0<s<1 and (—1)"[ft"q<"+1>(z)dt—q<">(1)];o.
0 1]

These both follow from condition (iii). Note that this last requirement is
necessary since the point (1, ..., 1) has positive v measure.

To complete the proof of the theorem we look at functions in @, with
g@*D=0. It may be verified that the general solution of this differential equa-
tion with the initial conditions ii) is

4. (x)=1-a(l-x)>%

the conditions (iii) and (ii) that (—1)"¢g™ (1)< 0 and ¢ (0) 20 reguire 0 <a<1 so
that g,(x)=gq, (x). Thus (E,) holds since g, is in fact what we called ¢, and
is the FINK-JODEIT result.
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Outline of the proof of (11). The two dimensional case will shed some
light. It is easy to verify by integration by parts that for any funetion suffici-
ently diferentiable

1 1

(14) G % »N=G6(1, V- [G (¢ D~ [G,(1,m)dn

1

1
+ [ [GnE mdEdn

x ¥y

so that if one defines the measure v by

(15) dv(x, »)=G(1, 1) 8y, h— G, (x, 1) dx &, () -G, (1, n)dn3, (x)
+ Gy, (x, ) dxdy

11
then G(x, )= [ [dv(E, ).

If one now replaces G(x, y) by G(x, y, z) in (14) regarding z as a parameter
and then writes

1

G(,1,2=6(1, 1, )- [G, (1, 1,0d,

1
G, 1,2)=G,( 1, )~ [G;(E 1,0 dE

etc. one gets

1 1
G(x,»,2)=G(, 1, )= [G, ¢ 1, )dE— [G,(1, m, 1)dy

1 1 1
~[6,(1, ,LOE&+ [ [ 6, m 1)dEdy

1

1 1 1
+ [ [6,E 1L, 0dEd+ [ [G,(1, 1, Ddndl

x z

111
_f f f6123(£9 n, £ d§dn dd.

z

The pattern for n variables is now clear. For the given G of the theorem,
note that each diferentiation brings out a minus sign as long as no variable
is differentiated twice. Thus G;<0, G;=0, G, <0 etc. It follows that (11) hol-
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ds with a non-negative measure analogous to (15). We offer a class of
examples: - ,

Let
(Y — 2l —yt ({22
g(x)=1-(1 x)+ a? (1 x)+ +2_n(1 x)+ +n_2

Then it can be verified that (i), (ii) and (iv) are satisfied with ¢ (0)=0. Since

(1 —x)':f’], n>2.

X

(— 1y g™ (1)= —n!, (iii) is satisfied if (1) [1"g™+D(1)dr=0, 0= x < 1.
0 .

In fact

—1)n 2 yn+1
L_L.f g+ (t)dt=L {ﬂ——:’—x+(n+2)x2]go.
(n+1)! P n—2 2

Furthermore the [ ]=0 near x=1 so that g<g, near x=1. The number a is

picked sufficiently small so that ¢’ =0. No such examples exist for n=2, since

(E,) is for x,>x,, the inequality
x2q (x_z) + %222 x, X,.

Xy

Let t=22 then for 0<t<1 we have q(t)=2t—1t2=gq,(t). Thus g, furnishes

X,
the best linequality for (E,), in fact for g,, the two sides are equal. Even for
n=3, it does not appear that there is an easy minimal function for which (E,)
is true, :
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JEDNA NE.iEDNAKOST IZMEPU TEZINSKE ARITMETICKE I TEZINSKE
GEOMETRIJSKE SREDINE

A. M. Fink

U radu je dobijena jedna klasa nejednakosti izmedu teZinske aritmetike i teZinske geo-
metrijske nejednakosti, pri &emu teZine koje se pojavljaju u geometrijskoj sredini nisu vecée od 1.



