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711. NUMERICAL DIFFERENTIATION OF ANALYTIC FUNCTIONS*'

Dobri/o f). Tosic

1. Introduction. Consider a real valued analytic function of a complex variable~
z f-'i>-f (z), regular in a disc Iz I<r. For numerical computation of derivatives,
of the function x f-'i>-f (x), for example at point x = 0, we usually evaluate the
function at points Xk = kh (k = 0, :!: I, :!:2, . . .) and then apply central finite
differences. In order to obtain the results of high accuracy, we use high order-
finite differences. Thus, we are forced to extend the table of function values, so
that we evaluate the function at points more and more far from x = O. An applica~
tion of finite differences of the relatively high order causes a considerable
accumulation on roundoff-errors, so that there exists an accuracy bound for-
the evaluation of derivatives. It should be noticed that the coefficients multip-
lying the function values in differentiation formulas are quite different for the.
central and the other abscissas [1]. Further, it is known that the numericaL
differentiation is an unstable process.

Analytic function z f-'i>-f (z) on the real axis becomes the function x f-'i>-f (x)..
The evaluation of the function z f-'i>-f (z) offers new information about the
function x f-'i>-f (x). Thus we can effectivelly and with higher accuracy compute
derivatives of the function z f-'i>-f (z) (i.e. x f-'i>-f (x)), because we retain near-

z=O (or x=O).

The numerical differentiation of analytic functions is ~treated in several
papers [2 - 4]. In these papers the computation of derivatives is realized by'
applying the trapezoidal rule to the real part of z f-'i>-f (z), starting from th~
contour integral t
(1) J<n)(0)= w. J I(z)

dz,
21ti J zn+ 1

C

where C is a closed contour surrounding the origin.

In the present paper we obtain formulas for
introducing the special complex linear operators of
gous with standard operators of numerical analysis.

numerical differentiation>
finite differences, analo-
These formulas are also-,

. Received June 1, 1980 and presented September 9, 1980 by YUDELL L. LUKE~

175



176 D. D. Tosic

.connected with the contour integral (1) and contain even number of points

.chosen on C.

2. Computation of the first derivative. Let us define the
-central difference ae by

(2) aef(z)=f(z+~ ei9)-f( z-~ ei9),

operator of finite

'Where the function z ~ f (z) is evaluated at symmetric points with respect
to z, taken with complex increments. For e= 0 we obtain the standard cent-
IaI difference operator

Since ESf(z)=f(z+sh) (sEC), where E is the shifting operator, we have

(3)

Using the well-known relationship E = ehD, where D is the differentiation

-Dperator, operational equality (2) becomes

I. I.-hDe,e --hDele

(I2 2 .

)ae=e -e =2 sh 2:hDe'e .

Developing the right hand side of this equality into the TAYLOR-Series,

'We obtain

.(4) ~ 2 (hD i9
]

(hD)
3

i3e )e = -- e + - - e +...
.2 3! 2

+00 ]
hD)

2m-l

= 2 L (- ei(2m-l)e.

m~I(2m-])! 2

. k 1<

Let us consider the equation z2n=1 (nEN). Its roots zk=eiek=e'"
({k = 0, 1, . . . , 2 n - 1) possess the foIlowing property (m is an integer):

.(5) m (mod nh~'O.

m(modn)~O.

If we multiply (4) by rie and put e = ek, it follows

.e-iek a6k= 2 (hD
+ ~ (hD)3ei26k+ . . . +

]
(hD)2m-lei(2m-2)6k + . . . ) .

2 3! 2 (2m- I)! 2
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By summing this equality with respect to k, from k = 0 to k = n - I,
using (5) we obtain

n-l
-"O'J (hD 1 (hD)2n+1 1

(kD)4n+l

)"" e . k ao = 2 n - + - + - + . . .
k~O

k 2 (2n+1)! 2 (4n+1)! 2
(6)

+00 1 (hD)
2vn+l

-2n -- v~o(2\1n+1)! 2
.

From this equality we can find the differentiation operator in the form

(7) 1 n-I" (h )
2n D2n+l

(h )
4n D4n+l

D=- L e-.Ok ~Ok - - - - - . . .,
nhk=O 2 (2n+1)! 2 (4n+1)!

i.e.

(8)

with the error-term

R = - (~)
2n D2n+ 1 f (z) _

(~)
4n D4 n+1 f (z)

Ion
2 (2n+1)! 2 (4n+1)!

Hence, for different values of n, we find practical formulas for nume-
rical differentiation of analytic functions.

Introducing in (8) the expression for a8, given by (2), and setting 6k =
krr:

=-, we have
n

(9)

REMARK1. Let us prove that the sum in (9), divided by nh, representing an approximative
value of the first order derivative, can be obtained using the trapezoidal rule for evaluation
of the contour integral

f'(z)=~ J:
f(Q

d~.
2 rr:i J (~- Z)2

11;-zl=-':2

h
By setting ~= z + - ei 8, we may rewrite this integral in the form

2

27<

f' (z)=
:h J

ri8f( z+
~ ei8)de.

o
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Dividing segment [0, 27r) by uniformly sp1ced abscissas into 2 n equal parts, and using
the trapezoidal rule, we have

(10)
1 7r ( ( h )

2n-1 .k1t

( h .k1t

)f'(z)"':!-'- 1 z+- + L e-I" 1 z+-e'" ).
7rh n 2 k~1 2

Since
2n-1 . k1t h. k1t

)
n-I k1t

( h'
k1t

)L e-I--nl
(

z+-e'--n =- L e--ir-I z--e'T ,
k=n 2 k~O 2

relation (10) transforms to the required result

1 n- I . k 1t

( (
h, k 1t

) (
h, k 1t

))f' (z)"':!
nh k~O

e -',,- 1 z+Te
1,,-

-I z-T e' --n ,

which completes the proof.

3. Higher derivatives. We first deduce formulas for derivatives of odd order.

Multiplying (4) by e-iJe, we have

-i36 ~ 2 (hD -i26 1 (hD)
3 1

(hD)
5

i26 )e 0 = -e +- - +- - e +...6 2 3! 2 5! 2

= +i 1 (hD)2m-1
ei2(m-2)6.

m~1 (2m-I)! 2

By setting e = ek and summing with respect to k from k = 0 to k = n - 1

(n> 1), we obtain

n-I
-i36 (1 (hD )

3 1
(hD )

2n+3

)L e k a6k = 2 n - -- + - + . . .
k=O . 3! 2 (2 n + 3)! 2

+00 1 (hD)
2vn+3

=2n -
Y~O (2vn+3)! 2

.

Hence, it follows that

where

= -6 ((
~

)

2nD2n+3/(z)+

(
~

)

4nD4n+3/(z)+.. . ).
2 (2n+3)! 2 (4n+3)!
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Generally, multiplying (4) by e-i(2r-I)6, where r:;;;'n, setting ec=e.k and
summing, we obtain

n-l
-'

(2 -10 ( 1 (hD)
2r-l 1 (hD)

2n+2r-l

) '.
L: e I r ) k =2n - + - +. . .

k=O (2,-'-1)! 2 (2'+2n-l)! \ 2

+00 1 (hD)
2r+2Yn-1

= 2 n --y~o(2r+2vn-l)! 2
.

Hence we obtain the general formula for numerical computation of de-
rivatives of the odd order

(11)
22r-2 (2 1)

'
n-l

D2r-l f( z) =
r- .

"
e-i(2r-l)Ok 80 f( z) +R

h2r-1 L.., k 2r-1.n'
n k~O

where

(12) R -
=-(2r-I)!+;

1 (~ )2VnD2Yn+2r-1f(z)
2r l.n

Y~l (2vn+2r-l)! 2

and r = 1, . . . , n.

REMARK 2. After the manner of (9), we can prove that (11) can be found by application
of the trapezoidal rule to the contour integral

/<2r-l) (z) = a f
I~-zl=!: 2

~d~.(~_z)2r

To develop formulas for numedcal computation of derivatives of the even
order let us start from the c0mplex averaging operator (1.6' defined by

We have
I . I .

1 (
Tel6 -ZeI6

)
(1.6=- E. +E

2

hD . hD .
1 ( 2

el6 -2 e'6) (hD
'6 )= - e + e = ch - e'

2 2

1
1 (hD )

2
i26 (hD)

4
i46

= +- - e + - e +...2! 2 2
i.e.

(13)



180 D. D. Tosic

Multiplying (13) by e-i26 and then setting 6 = 6k and summing with
respect to k from k=O to k=n-I (n>I), we obtain

(14)
II-I + co 1 (hD)

2VII

2:
e-i20k (1.ok=n 2: - -

k-O v-I~v~! 2
(n> I).

In the special case n = I, we have

+ co 1 (hD)
2V

=1+ -(1.0
V~I (2 v)! 2 '

where (1.of(z)=
~ (f(z+ ~)+f(z- ~)).

From (14) we obtain the formula for numerical evaluation of the second
derivative:

(I 5)

with the error-term

(16) R2.1I= -2 Y ~ (~ )
2VII-2

D2vII f(z),

v-2 (2 vn). 2

where n> I.
Generally, multiplying (13) by ri2rOk(r= I, .., , n), setting 6=6k and

summing with respect to k, it follows that

(17) (r<n).

For r=n we have

(18)
II~I

(1.0k n (I + ~ 1 (h2
D)

2I1(l+V»

)
.

k-::'O
= .

v-::o (2 n (1 + v»!

Using (17), the formula for derivatives of the even order is

(19)

where

Rzr'lI= -(2r)! y 1 (~ )
2VII

D2,+2 VIIf(z)

v-I
(2r+2vn)! 2

and r = I, . . ., n - I.
In the special case r = n, from (18) we obtain

(20)
(2n)'2211

(

II1-t

)
D211f(z)

= h2'11 -;; k~/Okf(z)- f(z)
+R2II'.'
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where

R2n.n = -(2n)! y 1 (h

2 )
2Vn D2n(I+v) j(z).

v= 1
(2 n (1 + v»!

1 +00

REMARK 3. The expression - 2: (L6k I (z) in (20) is the arithmetic mean of the function
n v~1

h i
krr

zf--'>./(z) evaluated at the 2n points z+- e n (k=O, 1,..., 2n-l). Therefore for the
2

purpose of simplicity we can use (20) for evaluation of derivatives of even order. We can
deduce the more general formula

n' (1 n-I i27tk

)l(n)(z)=-7. - 2: I(z+he n )-f(z) +Rn.n,
h n k~O

where
n!

R
"'"

- - hn 1(2n) (z ).n.n (2n)!

REMARK 4. Formulas for derivatives of even order can also be derived by iterating with the
oI:erator 86, Starting from (3) we have

2 (
D2 h2 i26 D4 h4 i46

D2m h2m
e"

2m6 )= -e +-e +...+ +... .2! 4! (2 m)!

Using the same procedure given above we obtain, for instance,

and from this a formula for the second derivative readily follows.

4. Examples. Equalities (11), (19) and (20), together with corresponding error-terms, for
n = 2 and z = 0 transform to practical formulas for numerical evaluation of the first four
derivatives of the function x f--'>.I(x) at x = O. Thus

(21)

- (~)
41(') (0)

- (~)
81(9) (0)

-. . .'
2 5! 2 9! '

(22)

- 2 (~)
4 1(") (0)

- 2 (~r
1(10) (0)

2 6! 2. 10!



h f' fN
f'"

f(4)

2 1.00833 6089 1.00277 8329 1.001190627 1.00059 5288

I 1.000520844 1.000173613 1.000074405 1.00003 7203

0.5 1.00003 2552 1.000010851 1.00000 4650 1.00000 2328

0.25 1.00000 2035 1.00000 0678 1.000000291 1.000000168
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(23)

-6 (~)
4f(7)(0)

-6 (~)
8 f(11) (0)

2 7! 2 11!

(24) f(4) (0) ~ :~ (f( ~) + f (- ~ )+ f (i~ )+ f (- i
~) - 4 f (0) )

- 24 (~)4 f(8) (0)

- 24 (~)
8 f(12) (0)

-. . .
2 8! 2 12!

An examination of the first term in each of the error expressions, which are the main
parts of the errors, shows a curious behaviour under the condition that the higher derivatives
are approximately equal Le., f(5) (0);::;f(6) (O)~. . . , which is true for x ~ eX. We find

I I I
R (2, 2)~-- R (I, 2), R (3, 2)~- R(I, 2), R (4, 2)~-- R (I, 2).

3 7 14

Thus for a fixed number of points if we compute higher derivatives, their accuracy
increases. Such property of differentiation formulas is quite different than the property of corres-
ponding formulas in the real domain.

For the purposes of simplicity consider. the function x ~ eX at x = O. This is' very
convenient since all derivatives are equal to unity.

Results of numerical evaluation of f', fN, fO' and /(4) by (21) - (24) to ten signifi-
cant figures are presented in the following table.

If we further decrease h, the errors reach minimum and then increase, which indicates
that roundoff errors appear to be significant.

An analysis of the practical application of our formulas will be given in [5].
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NUMERICKO DlFERENCIRANJE ANALITICKIH FUNKCIJA

D. D. Toiii:

U radu je iznet razvoj prakticnih formula za numericko diferenciranje analitickih fun-
kcija. U tom cilju razvijeni su kompleksni opera tori: operator centralne razlike ~6 i usrednja-
vajuci operator 11-6.Pomocu veze ovih operatora sa operatorom D, izveden je niz formula za
numericko diferenciranje. Dve formule se mogu efikasno primeniti na realne funkcije.


