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680. INEQUALITIES BETWEEN ARITHMETIC AND LOGARITHMIC
MEANS*

A. O. Pittenger

1. Introduction. In the analysis of the transmission of heat between two f1uids~
it is sometimes appropriate to use the logarithmic mean of the temperature dif-
ferences, where that quantity is defined as L = L (x, y) = (x - y)/(log (x) -Iog(y)).
(See, for example, [2].) Now if Ap = Ap (x, y) = «xP + yP)/2)I/p denotes the p-th

arithmetic mean, then using Ao = Vx .y it is easy to see that Ao ~ L ~ AI, What

is not as well known, and what was shown in [1], is that L ~ Ap if p ~~.
3

Moreover 1/3 is sharp: if O<p< 1/3 both L (x, y)<Ap (x, y) and L(x, y»Ap(x, y)
will occur.

It is also well known that Ap increases from the geometric mean Ao to
the arithmetic mean Al as p increases from 0 to I. In [31 STOLARSKYdefined a
generalized logarithmic mean which is also an increasing interpolator from Ao to AI:

(I) L, = L, (x, y) = [(x' - y')/(r (x - y) )]1/('-1),

with the limiting values used at x = y and at r = 0 and r = 1. Thus Ao = L_1'
L = Lo and Al = Lz. Since both L, and Ap interpolate Ao and At' it is natural
to ask for inequalities between them. In this note we use elementary techniques
to resolve that question .completely. Since the proof is rather involved, most of
the details are omitted.

2. Statement of the results. Let al =al (r)=(r+ 1)/3 and for r>O let az=
= az (r) = (r - I) log (2)/log (r) with az (1) = log (2). For O.<r define PI = min (at' az)
and pz=max (at' az). For -oo<r<O, pI=min (0, a1) and pz=max (0, al).

Theorem. For all positive x and y

(2) ApI (x, y) ~ L, (x, y) ~ Ap2(x, y),

PI and Pz are sharp, and there is equality only when x = y or else when r equ-
als 2, 1/2, or - 1.

Note that if r=O we obtain Ao~L~A1/3'
An equivalent result is
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'Theorem'. Suppose PI and P2 are as above and O;;;;;;t<oo.
Then

«3) (cosh (PI t))I/PI ;;;;;;rsinh (rt)/(r. sinh (t»)]l/(r-I) ;;;;;;(cosh (P2 t»
{p

'with limiting values at r = I and r = O. Again PI and P2 are sharp, and there is
.strict inequality for positive t unless r equals 2, 1/2 or - 1.

Relations (2) and (3) are related as follows: assume O<y;;;;;;x and set
.e2t= x/yo Then division of (2) by Vxy gives (3). We remark that the monotonicity
..of log (L,) can be verified easily using the middle term of (3).

3. Proof of Theorem' for 0 <r < 00. It is easy to check the cases r = 2
.and r = 1/2 as well as the fact that the case 0 < r ;;;;;;I follows from I;;;;;;r < 00.
With the limit expression understood for r = I, assume I;;;;;;r and define

0(4) f(t) = p-I -log [cosh (pt)] - (r - Irl log [sinh (rt)/(r. sinh (t»].

For small t, f(t)R:!t2(p-al)/2, while for large t, f(t)R:!(Iog(r)/(r-I»(p-a2)/p,
~thus motivating the definitions of PI and P2 as well as establishing the asserlion
.about sharpness.

Next compute!, (t) and use elementary identities to obtain!, (t) = N(t)/D (t),
"Where D (t) is positive for positive t and

(5)
GO

N (t) = L cdr- I, p). t2k+I/(2k+ I)!
k=1

with

(6) Ck(x, u) = x-I [(x + U)2k+I + (x + I)(x - u)2k+I - x (2 + x - u)2k+I].

The idea is to determine the sign of f' (1) by examining the coefficients Ck'
10 this end note that for O;;;;;;x<1cdx, X)<O<Ck(X, I), while for I<x<oo,
.cdx, 1)<O<Ck(X, x). Also dCk/du>O if O;;;;;;x,u;;;;;;1or if 1<u;;;;;;x.

-Case I: O;;;;;;x=r-I<I and p=(x+2)/3=al(r).

"Then CI(X, p)=O, and we wiU show Ck(X, s)<O, k;;;'2, where s=s(x)=(x+3)/4.
,since x<p<s, it then follows from dCk/du>O that cdx, p)<O; hence l'(t)<O
.and f(t)<O for positive t.

Expanding in terms of x it is easy to check that

Ie
Ck(X, s)=(3/4)2k+1 L xk+m-bk(m)

m=-k

"Where the sign of bk (m) depends on
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Now bk(O)=O, bk( -m)= -bdm) andbk(m»O for I ;;;'m;;;,k. Since ck(l, (s(1)) =
=0, it thus follows that cdx, s)<O for O;;;,x<1.

Case 2: O;;;,x=r-I<I andp=x.log(2)/log(x+I). Using the concavity ofp,
verify that (x+2)/3<p«x+3)/4. By the results above CI(X, p) must now
be positive and Ck(x, p) negative for k ~ 2. Hence l' (t) is initially positive,
has one zero and is ultimately negative. Since 1(0)=0= lim/(t) in this case,

/-->-00
l(t»O for O<t< 00.

Case 3: I<x=r-I and p=(x+2)/3. Let Uk(X) be defined uniquely by
Ck(X, udx))=O, so that UI(X)=P. Since uk'(I)=(2k+1)-I, it follows that

Uk+!(x) <udx) for x near 1. If that were true for all x> I, then cdx, p)

would be positive for k ~ 0 and I(t) positive for positive t.

Assume then that Ck(x, u) = Ck+1(x, u) = 0 for I <u<x and k ~ 1. Then
using y = «u - I)Iu

}1/(2k+I) it follows that

hey) = (I +y) (I - y2k+I)2k+2_(I-Y) (l_y2k+2)2k+1 = 0

for some O<y<1. But, after factoring out, (I_y)2k+2.(I+y+... +y2k)2k+l,
it is easy to see the resulting expression is positive for all 0 <y < 1. Hence

Uk(X»Uk+1 (x) for k~l, completing this case.

Case 4: I<x=r-I andp=x.log(2)/log(x+ I). Nowul(x»p so thatcI(x,p)<O,
- -and for each x there is some k such that Ck(x, p);;;,0 for I;;;,k;;;,k andck (x,p» 0

- -for k>k. Since I approaches zero as t approaches infinity, k<oo. Thus I' is
initially negative, has one zero and is ultimately positive, thereby forcing l(t)<O
for positive t.

4. Proof of Theorem' for r = O. Proceed as before to obtain PI = 0 and

P2 = 1/3 as the best possible values for bounds. The verification of the lower
bound is immediate. For the upper bound set g (t) = t - sinh (t)/( cosh (tI3))3
and check that g'(t»O for t>O.

5. Proof of Theorem' for - 00 <r<O. The case r= - I is immediate, and
the assertion for - 00 <r< -I follows from that for -I <r<O. Assume then
that - I <r<O, define I(t) as in (4), and check that 01 is a candidate for the
upper bound and no positive p will work for the lower bound. Again compute,

(t) to obtain (5) and (6). Since analysis of Ck doesn't seem to work, let
r=(-I-y)-l, so that O<y<oo ard p=yI3(I+y). Then substitution into (6)
reduces the proof to checking that terms of the form

akU)=Ck/l) (2j-I)-3Cj~~1)

are positive for k~2 and I ;;;'j;;;'2k+ 1. Again 1'(t»O and the proof ill
complete.
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NEJEDNAKOSTI IZMEDU ARITMETICKE I LOGARI'fAMSKE SREDINE

O. A. Pittenger

U ovom radu autor je dokazao nejednakosti (2) izmedu aritmeticke i generalisane 10.
garitamske sredine.


