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680. INEQUALITIES BETWEEN ARITHMETIC AND LOGARITHMIC
MEANS*

A. O. Pittenger

1. Introduction. In the analysis of the transmission of heat between two fluids,
it is sometimes appropriate to use the logarithmic mean of the temperature dif-
ferences, where that quantity is defined as L= L (x, y) = (x —y)/(log (x) — log (»))-
(See, for example, [2].) Now if A,=A,(x,y)=((x?+y?)/2)!/? denotes the p-th

arithmetic mean, then using 4,=}/x-y it is easy to see that A,<L <A,  What
is not as well known, and what was shown in [1], is that L< A, if p g%.
Moreover 1/3 is sharp: if 0<p<1/3 both L (x, y) <4, (x, y) and L (x, y)> 4, (x, y)
will occur.

It is also well known that A, increases from the geometric- mean A4, to
the arithmetic mean A4, as p increases from O to 1. In [3} STOLARSKY defined a
generalized logarithmic mean which is also an increasing interpolator from 4, to 4,:

() L,=L, (5, )= [ =y (=)™,

with the limiting values used at x=y and at r=0 and r=1. Thus 4,=L_,,
L=L, and 4,=L,. Since both L, and 4, interpolate 4, and 4,, it is natural
to ask for inequalities between them. In this note we use elementary techniques
to resolve that question.completely. - Since the proof is rather involved, most of
the details are omitted.

2, Statement of the results. Let a,=a, (r)=(r+1)/3 and for r>0 let a,=
=a,(r)=(r— 1) log (2)/log (r) with a, (1) =log (2). For 0 <r define p, = min (a,, a,)
and p,=max (q,, a,). For — oo <r<0, p,=min (0, ¢;) and p,=max (0, a,).
Theorem. For all positive x and y

(2) AP: (x’ y) = Lr (xs y) = Apz (xs ,V),

p, and p, are sharp, and there is equality only when x=y or else when r equ-
als 2, 1/2, or —1.

Note that if r=0 we obtain ;<L <A4,,.
An equivalent result is
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“Theorem’, Suppose p, and p, are as above and 0 <t<<oo.
Then

43) (cosh(p, 1))!7: < [sinh (rt)/(r - sinh (£))]'~ D < (cosh(p, 1)) /7

‘with limiting values at r=1 and r=0. Again p, and p, are sharp, and there is
strict inequality for positive t unless r equals 2, 1/2 or —1.

Relations (2) and (3) are related as follows: assume O0<y<x and set

2 =x[y. Then division of (2) by V;}j gives (3). We remark that the monotonicity
«of log (L,) can be verified easily using the middle term of (3).

3. Proof of Theorem’ for 0 <r<oo. It is easy to check the cases r=2
and r=1/2 as well as the fact that the case 0<r<1 follows from l1=<r<oo.
‘With the limit expression understood for r=1, assume 1=<r and define

q{4) f(t)=p~*-log[cosh(pr)] — (r - 1)7! log [sinh (r7)/(r - sinh (¢))].

For small ¢, f(f)~t*(p—a,)/2, while for large t, f(t)~(log(r)/(r—1))(p—a,)/p;
thus motivating the definitions of p, and p, as well as establishing the asserlion
.about sharpness.

Next compute f* () and use elementary identities to obtain f* () = N (¢)/D (¢),
‘where D (¢) is positive for positive ¢ and

«5) N@®= c(r=1, p)-£2%*YQ2k+ 1!

k=1
with

16) G (X, W=x"[(x+ w4 (x+ 1) (x—u)ktt —x 2+ x —u)?k*1].
The idea is to determine the sign of f’ () by examining the coefficients c;.

To this end note that for 0 <x<<1 ¢, (x, x)<0<¢, (x, 1), while for 1<x< o0,
< (%, D<0<c,(x, x). Also 0¢,/ou>0 if 0<x, u<1 or if l <us<x.

“Case 1: 0sx=r~1<1 and p=(x+2)/3=a,(r).

“Then ¢, (x, p)=0, and we will show ¢, (x, §)<0, k=2, where §=15(x)=(x+ 3)/4.
Since x<p<s, it then follows from d¢,/ou>0 that ¢ (x, p)<O0; hence f’ (£)<0
and f(t)<0 for positive ¢.

Expanding in terms of x it is easy to check that

6 (5, 5)=@MARE S xktm.b, (m)

m=—k

-where the sign of b, (m) depends on

By (m)=(k+ 1 —m) (5/3)+1m —(k + 1 +m) (5/3)k* 1=" — 2m( — 1)k*».
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Now by (0)=0, b, (—m)= — b, (m) and b, (m)>0 for  <m=<k. Since ¢, (1, (s(1))=
=0, it thus follows that c, (x, 5)<0 for 0<x<1.

Case 2: 0<x=r—1<1 and p=x-log(2)/log(x1). Using the concavity of p,

verify that (x+2)/3<p<(x+3)/4. By the results above c, (x, p) must now

be positive and ¢, (x, p) negative for k=2. Hence f'(¢) is initially positive,

has one zero and is ultimately negative. Since f(0)=0= lim f(¢#) in this case,
t—o0

f()>0 for 0<t< 0,

Case 3. l<x=r—1 and p=(x+2)/3. Let u,(x) be defined uniquely by
¢ (%, u (x))=0, so that u, (x)=p. Since u’ (1)=(2k+1)7", it follows that
U ., (x)<u, (x) for x near 1. If that were true for all x>1, then ¢, (x, p)
would be positive for k=0 and f(¢) positive for positive ¢.

Assume then that ¢, (x, u)=c,,,(x, u)=0 for l<u<x and k=1. Then
using y = ((u— 1)/u)"'@**1 it follows that

h)=(1+y)(1 _.y2k+1)2k+2_(1 -»na __y2k+2)2k+1 -0

for some 0<y<1. But, after factoring out (1—))***2.(1+y+ ... p2k)2k+1l
it is easy to see the resulting expression is positive for all 0<y<1. Hence
u, (X)>u, ., (x) for k=1, completing this case.

Case 4: 1 <x=r—1and p=x-log(2)/log (x + 1). Now u, (x)>p so thatc, (x, p) <0,
and for each x there is some k such that ¢, (x, p)<0 for 1 =k <k andc; (x, p)>0
for k>k. Since f approaches zero as ¢ approaches infinity, k< co. Thus f’ is
initially negative, has one zero and is ultimately positive, thereby forcing f(¢) <0
for positive .

4. Proof of Theorem’ for r=0. Proceed as before to obtain p,=0 and
p,=1/3 as the best possible values for bounds. The verification of the lower
bound is immediate. For the upper bound set g(#)=¢—sinh(¢)/(cosh (z/3))?
and check that g’ (#)>0 for ¢>0.

5. Proof of Theorem’ for — oo <r<<0. The case r= —1 is immediate, and
the assertion for — oo <r< —1 follows from that for —1<r<0. Assume then
that —1<r<0, define f(¢) as in (4), and check that a, is a candidate for the
upper bound and no positive p will work for the lower bound. Agzin compute
"(¢) to obtain (5) and (6). Since analysis of ¢, doesn’t seem to work, let
r=(—1-»71, so that 0<y< oo ard p=y/3(1+y). Then substitution into (6)
reduces the proof to checking that terms of the form

2k+1 2k+1)

a (=" @=n-3(77

J

are positive for k=2 and 1=<j<2k+1. Again f'(£)>0 and the proof is
complete.
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NEJEDNAKOSTI IZMEDU ARITMETICKE I LOGARITAMSKE SREDINE
0. A. Pittenger

U ovom radu autor je dokazao nejednakosti (2) izmedu aritmeti¢ke i generalisane lo-
garitamske sredine. .



