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672. ON THE UNIVALENCE OF RATIONAL FUNCTIONS*

Dragoslav S. Mitrinovi¢

1. Consider the function

) z>f(2)=

z
(1 +zmy*

tk,n=1,2,..),

and suppose that nk —1>0, which excludes the case f(z)= IL’ whose domain
+z

of univalence is the whole z-plane.

The function f is regular in the disk |z|<1. Let z, and z,(z,#2z,) be
arbitrary points of the disk |z|<r(r<1), ie. let |z|<r and |z,|<r, and
start with the difference

. _ a(l+zMk—z, (1 + 2k
f@)-f@) A+z* 1 +z,mk
By a repeated use of the inequalities
la|—|bl=|a+b|<|a|+|b]
we get
1+ pm)2k’

VNS ESERSAP 4

where
def

| A=1—(’f)(n—l)rn—(’z‘)(zn—l)rh—----(’,j)(kn—l)rk"
=(1—@k—1)r) (1 +r+1
If A>0, which is fulfilled for r<1/[/nk—1, the implication
z2,%#2, = [f(2)#Sf(2,)

is valid.
Since the zeroes z,(p=1,...,n) of the function f’ are such that
|z,|=1/{/nk—1, we arrive at the result:

zZ
+ z)k
|z|<r, with the maximal radius r given by

Theorem 1. The function zr> m (n, k=1, 2,...) is univalent in the disk

1
"I/ nh—1
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222 D. S. Mitrinovié

ReMARrk, The function z — by means of the substitution 27_&=t, reduces to the
i/ a
function #+> ———— which we already considered.
(1 + )k

(1 +azmk’

2. Consider now the function

2z

(ak # 0),

) z>f(2)=

l+a,z+ -+ +azk

which contains as a particular case the function (1).
Using the same procedure as in Section 1, we find

1—z,z,(a,+a,(z+ )+ +ap (zF 24z, 3 2,4 ... 4 2)k2))
3

(3) f(z1)—f(22)=(21‘22) (l+a‘z‘+"'+a"zlk)(1+alzz+'--+akzzk)
| 1—rt(|a,|+2r|ay|+--- +(k—1 k-2)
@) @) —f@)[>]2— 2] : (la(ll+[trllllarL...+|t§klrk))2|aklr .

Here again z, and z, denote arbitrary points of |z|<r, where r should
be chosen so that the polynomial P(z)=1+a,z+ ---+a,z* has no zeroes
in the disk |z]|<r.

If
®) 1—|a,|r*—2ay|rP— -+« —(k—1)|a|r*>0,
then the expression on the right hand side of (4) is positive.

Hence, the implication z,%z, = f(z,)#f(2,) is valid.

Since

, 1—a,2?—2a,2°— .- —(k—1) a zF
Z)=
/'@ A+a,z+ - +a,zk)?

2

the zeroes of the function f' are given by the equation
©) (k—-Dayzk+ - - - +2a,23+a,z2—1=0.

In order to determine the maximal radius of univalence of the function
(2), it is necessary to know suitable informations about roots of equations (6) and

(M 1—|a)|r2=2|a,|r* = - - - —(k—1)|a,| r*=0.

This equation has exactly one positive root, which we denote by r,. If

® | =las|r +2{a|rd+ -+ (k=2) | [t
the polynomial P has no zeroes in the disk |z|<r, because, for |z|<r,,
[P@|z1-|a[iz]=|apfz]? = - - - ~[a][z]*
>1—lay|ry—|a,lrd— - -« —la|rk
z1-|ay|r® = 2]a|rg = - - - —(k =D a|rs".

If a,,..., aq, are real nonnegative numbers, then r, is a root of the
equation (6), too. On the basis of previous considerations one can conclude

the following:
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Theorem 2. If the condition (8) is satisfied, the unique positive root of (7) is a
radius of univalence of the function (2). If, in addition, a,, ..., a, =0, then ris
the maximal radius of univalence of the function (2).

If a,,..., a, are positive numbers, then the equation (6) has only one
positive root which is, at the same time, a positive root of (7).

A special case of the function (2) is

©)) f@=—2—;

1+z+22

the equations (5) and (6) read: r’—1=0 and z= +1 respectively, which
implies r=1 (the other root is discarded) and z= +1 (in these points the

function f is not univalent). The function f has two poles z=%(— 1+i}/3) which

lie on the circle |z[=1.

Hence, the maximal radius of univalence of the function f, given by
), is r=1.

3. In MARDEN’s monograph ([1], p. 126, exercise 2) the following theorem is
given:

All the zeroes of polynomial cy+c,z+ -+ + +¢,2%(c,#0) lie on or outside
the circle
el

|z|=min .
p=1,..., k [c|+]|cp|

According to this theorem, all the roots of the equtions (5) and (6) lie
in the region |z|=r, where

(10) r=min( 1 , ! . ! )

1+]a,|” 1+2]|a,]” "7 14 (k—1) |a|

If P(z) has no zeroes in the disk |z{<r, a radius of univalence of the
function (2) is given by (10), but that r need not be the maximal radius.

Apply this theorem to the function

z

z = ——
/@) l+z+2%+...+2F
The zeroes of the polynomial P(z)=1-+z+2z%+ ... +zF are given by
' 2nmi
z,=ek+tt (n=1,...,k)

and they all lie on the circle |z|=1.
The equations (5) and (6) in this case read

1-r2-2pP3~ ... —(k-1)rk=0,
1—22-223— ... —(k—1)zk=0,

respectively. Applying the mentioned theorem, we get

. ( 1 1 1 ) 1
r=min{—7, — ..., ———|=—.
1+0° 1+2 1+k-1) k
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Hence, the function f is univalent in the disk ]z[<%, but the radius of

univalence is not maximal. After all, we applied a theorem which does not
give the best possible result.

4. If we apply the procedure from Section 1 and the theorem from Section 3
to the function f given by )

(11 f@

we arrive at the result:
If ajb,—a,b,#0 and a,#0, the function (11) is univalent in the
disk {z|<p=min(r,, r,), where

_bytbz+b, 2

2
a+a, z+a,z?

[ o] 1] ])’

r1=min( s
|ao}+]a,| la|+]|a,

P —min( |a, b, —a, by |y by—a, by | )
)= .

|ayby—a, by| +2|ayby—ay by| * |ayby—a, by| +)|a, b,—a, b |
We cannot claim that p is the maximal radius of univalence.

5. Consider now the function f given by

(12) f(z)=bo+b,z+bzz:+b,z’.
ayta z+a,z*+a, 2}
The equations which correspond to the equations (5) and (6) in this case read
13) |(aob1)l_2 ‘ (aobz)}r"(3|(aob3)|+|(al bz)l)"2
~2|(a; b)) |r*~[(a, b)) |r*=0,
(14) (@ b)) +2(ay b))z + (3(ayby) + (@, b)) 2+ 2 (a, b)) 2 + (4, by) 2= 0,
where we define

To the polynomial a,+ a, z+a,2z?+a,z* corresponds:

: LA || || ) .
r, =min , . a,70);
' (|ao|+ia,| alelal Talela) @
and to the polynomial of equation (13) corresponds:
r,= mln( | (@ 8) | , | @ b)) | ,
(@ b)) |+2 (@ 5,) | | (@ by)| +3(1(@ b))+ |(a, b))
[ (@ b)) | [ (@, b)) | ) a b)#o
l(“ob1)|+2l(a1b3)|’ | (@ b,) | +](a, b)) | ’ (0 !
Since .

[3(a,b;) +(a,b,) | <3[(ayby) | +](a, b)) |,

r, also corresponds to the polynomial of equation (14).
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The function (12) is univalent in the disk
|z|<p=min(r,, r,).

6. Consider now the most general rational function.

g b, 2
(15) zb>f(z) ="
lzoai Zi

which contains the case when the polynomials in the numerator and denominator
are not of the same degree, since it is enough to take b,=0, b,_,=0,...,
b,_o=0(q<m) or a,=0, a,_,=0,...,4a, ,=0(p<m). Formulas become
symmetncal when the rational function f is considered in the form (15).

(@, 0, —a,b,#0 and a,#0),

We suppose that the polynomials in the numerator and denominator
have no common zeroes.

Let z, and z, be the points from the disk |z|<r(|z,|<r and |z,|<r)
and consider difference

m . m m m m .
z bizli z bi Zzl 2 bi le. z ai,zzi__ z b‘_ zzi. z alzli
i=0 i=0 i=o <o
(16)  f@)~fE)=7—~ - it = iz
. 2 oz 2 az} ) Z a;z,l z a;z,!
i=0 i=0 i=0 =0

V. Koci¢ showed (private communication) that .

m ’ m m
()] Z bz, Z a;z)~ 3 bz S ayzi= 3 (a;b)z/2) (2,7~ z,),
=0 i=0 =0 ;,ii=jo ]

>,

where (a;b)=a;b,—a;b;.

We shall now transform the sum on the right-hand side of (S) in the
following way

def m )
A= 3 (g b)z/z) (2~ - z,7)
i, j=0
i>j

=(,b,)) (z, - 22)+Z(aob)(zl ~z)+ Z (@;b)z/z) (z,/~7 - z,)
=1
i>j

=(z,-2,) ((ao b))+ z (@, b)) (21' Ytz 2z, 4 .0 +zzi-1))

i=2

m -
+ z (aj b‘) zljzzl(’zli—]- 1 + zl’i—]—-z z, 4o+ Zzi—j-l).
, 2
jl>]

15 Publikacije Elektrotehnitkog fakulteta
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We have for A4 the following estimates

121z~ 20| @) - 3 1@zl + 2z ¢ SRLEAE

i=2

- % |(qb)] {zlljlzzp(lzlli—l-l+|lei_j‘2[zzl+ +lz Il-l—l))

Jyi=1

i>j ;
>l =ni(I@bi= Sil@ar = 3 6=lsir-)
i=2 {>f,_

Let ]
de m m
B'=_|(a0b1)|— z i|(ayb)|ri—t— z (i—j)](ajb,.)|r"+f“.
=2

Jii=1
i>j

If B> 0 for sufficiently.small r,Awe have
—z,|B
@) ~f ()| >—1==al :
I 1 f(2 (aol+ @] r+ -« +|am|rm?
which yields ‘the implication z,7#z, = f(z,)%f(2,).
The derivative f’ is given by

f(z) (Z——m’—)—-(zwz’ . Za,z—zbé'. zzhaz‘ ‘)

i=1 i=0

S (aob)+zz(aob,)zt S (t—j)(ajb)z“ff 1)
(g:oai z') : . ' e

The above formula was deduced in the following way. By considering
particular™ cases “it> was noticed that the polynom1a1 B and the polynomial

C (aob)+21(aob)z‘ 1y 2 i j)(ajb)z‘“ !
i= jl l

‘are of such structure that, startmg with B lt is’ poss1ble to form C. This
hypothesis was then proved in the general case by mathematical induction.

Hence, the three equations > 4,z'=0, C=0 and B=0, ie.

<o
a7 a,+a,z+ ---+a,z"=0,
(18) ’ (ao 1)+Z’("o I)Z‘ T+ z (=) (@b)z+~1=
jl l
19) |@B) |- 3 il@b) it =3 G-i)|(@b)|r+i-1 =
=2 B =1
i>J

similarly as in Section 5 of this paper serve as a basis for determining a
radius of univalence, or even the maximal radius of univalence of rational
functional f defined by (15).
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In particular, the equations (18) and (19) obtain the following forms:
for m=35 _
20) @ b)) +2 (@0 b) 2+ (3 (8,5 +(a, b)) 22+ (4 (a,b,) +2 (a, by)) 2*
+(5 @, b) +3(a,b)+(ay b)) 2+ (4 (a, bs) + 2 (a, b,)) z°
+(3 (@, b)) + (e, b)) 25+ 2 (a, b,) 27+ (a, b;) 28 =0,
[e3)) [ (@by) |—2| (8,6 |[r—(3] (@, b)) | +](a,b,) ) P—(4 | (@ b,) | +2] (@, b)) |) r*
—(51 @b |+3](@,5) | +] @, b)) *—(4] (@ )| +2| @, 5)|) P

—(3|(azbs)|+l(a3b4)l)r6_2l(azbs)lﬂ_‘l(‘hbs)lrs“o;
for m=17

) @ b)) +2(a,b) z+ (3 (@, by) +(a, b)) 2 + (4 (3, ) + 2 (a, b)) 2°
+(5(@ b)) +3(a,b)+(a,0)) 24+ (6 (a, bs) + 4 (a, by +2 (a, b)) z*
+(7 (@, b;) + 5(a, bg) +3 (2, bs) + (a, b,)) z°
+(6(a, b,)+4 (@, by)+2(a,b,)) 27+ (5(a, b,) + 3 (@, bg) + (a, by)) 2*
+(4(a,6,)+2 (@, by) 22+ (3 (a, b;) + (@5 b)) 2° + 2 (as b,) 2 + (ag b;) 212 =0,
(23) I(“obl)l"2|(‘70[72)|""‘(3l(aobs)l""(albz)l)"z'_(“'l(aoba)l"‘zl(ax.b3)|)"3
~(5] (@b |+3 1@, b) |+ @ b)) r—(6](a,b0) | +4| @, 55)|+2]| (@, b)) r*
(7} @5 |+5 @59 | +3 | @, 69 | +] (@, 5) ) r* .
—(6](a,b,) [ +4] (@b | +2 (a6 )" +(5| (@, ) | +3 | @, 69 |+ | (@, b5)|) r®
—(4] @5 | +2 @ b)Y P—(3 | @ b)) |+ | (a5 be) |) r*® :
—2|(@sby) [ r''—| (@ b)) | r'*=0.

The formulas clearly possess a high degree of symmetry.
Formulas (22) and (23), for a;=a,=b;=b,=0, reduce to (20) and (21), respectively.

7. We consulted a large number of papers and, in particular, monographs
[2] — [6], as well as the thorough exposition [7] and we did not find the
results given here, though they are elementary. The Theorem 1 given here in
Section 1 seems to be particularly interesting.

Prof. D. MitrovIC and Prof. D. D. ADAMOVIC read this paper in manu-
script and made valuable comments.
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