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636. CUBIC SPACE CURVES ON CAYLEY'S CYLINDROID

O. Bollema

1. The cylindroid C of CAYLEY(also called Pl;UCKER'Sconoid) is a much
studied metrically special ruled cubic surface which is an important subject in
BALL'S theory of screws. On a suitably chosen Cartesian frame the equation
of C is, for homogeneous coordinates,

(1.1) (X2+y2)Z= 2 dxyw, d>O.

C is invariant for the reflection into OZ. In a horizontal plane z = mw we
have two generators intersecting at a point of Oz. In the central plane z = 0
they are the x- and Y~axis. For -d<m<::.d the two generators are real and
distinct. For d = ::!:m they coincide with the dorsal lines of C, the dorsal
planes being z = ::!:dw. All generators intersect the line I with the equations
z = w= O. The intersection of C and the plane W at infinity consists of I and
the two conjugate imaginary lines 81 and 82' given by X2+y2=W=0, inter-
secting at the point at infinity of oz.

On C there are 001 straight lines and 002 ellipses (the intersections of
C and arbitrary planes through a generator) and 003 plane cubics. We ask
whether there exist on Creal non-degenerate twisted cubics.

2. Such a cubic k is represented if x, y, z, ware given as four linearly inde-
pendent cubic functions of a parameter I. Obviously of the intersections of k
and W one, denoted by A, is on I and two, BI and B2' on SI and 82' respec-
tively. The parameter I may be chosen such that A corresponds to 1=0 and
the B's to 1= ::!:i. Hence we can take 2 dw = t (l + (2); Z must have the factor
I. We take z = 12, a choice justified by the result. The condition that k is on
C reads (X2+ y2) t2 = xyt (l + (2) which is satisfied by x = 1, y = I and by x = t,
Y = 1. By this trial and error method we have found two cubics on C:

(2.1)

(2.2)

k1 :

k2:

x=l, y=t, Z=/2, 2dw=t(I+/2),

x=l, y=l, Z=/2, 2dw=/(l+/2).

It is easy to verify that in both cases x, y, z, ware linearly independent,
which implies that we deal with space curves.

3. k1 and k2 are special cubics on C, both with simple equations. The trans-
formation I' = - I shows that k1 is invariant for the reflection into the Y-axis.
It passes (for 1=0) through A = (I, 0, 0, 0), for 1= ::!:i through (l, ::!:i, - I, 0)
and for 1= 00 through the origin O. A horizontal plane V: z = mw intersects
k1 at A and at two more, finite, points £1 and £2' determined by m/2-
2 dl + m = 0, one on each of the two generators in V. For m = 0 one coincides
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with 0; for m = d the generators coincide with the dorsal line x - y = z - dw = 0
and Ep E2 coincide at (1, 1, 1, d-1), for m= -d they coincide at (-1, 1,
-1, d-1) on the lower dorsal line x+y=z+dw=O. For k2 we have analogous
results; k2 follows from k1 by interchanging x and y.

4. It is weH-known that 002 quadrics pass through a twisted cubic.
From (2. I) it foHows

(4.1) I :t:t2:t3=X:y:z:(2dw-y).

This implies that through k1 pass all quadrics of the linear system

(4.2)

with

(4.3)

Qi = 0 (i = I, 2, 3) being linearly independent quadrics. The intersection of
C and a quadric Q of the set (4.2) is a curve of degree six. As k1 is on
Q and on C it belongs to the intersection and the remaining part is also of
the third order. It cannot be a plan cubic because it lies on a quadric.
Furthermore it is easy to verify that k2, given by (2.2), does not lie on any
quadric (4.2). Hence there exist two systems, both of 002 cubic space curves
on the cylindroid.

s. It seems to ask for much algebra to determine explicitly the cubic curves
in terms of <x,~,y. Therefore we restrict ourselves to a subset of (4.2), the
cones of the set. Let To (with t = to) be a fixed point and T a variable point
on k1. We consider the cone through k1 with vertex To. A generator of the
cone is represented by

(5.1) x=l+u, y=t+uto' Z=t2+ut/, 2dw=t(l+t2)+uto(l+t02),

with t fixed and u variable. This line has three intersections with C, two of
them being To and T, corresponding to u = 00 and u = 0 respectively; let T'
be the third intersection. If we substitute (5.1) into (1.1), the coefficient of
U3 and the constant term vanish and third root is

u = (t2 + to t - 1)/( - to t - t/ + I).

If we substitute this in (5.1), we obtain after some algebra
T' for variable t:

(5.2)

the locus qf

(5.3) x=t+to' y=l, z=(t+to)(-tot+I), 2dw=(-tot+I)«t+toF+I),

which for any value of to represents a twisted cubic on C; we have derived
therefore explicitly a '!'yMem of 001 such curves.
A curve (5.3) could be considered as the projection of k1 from its point To
as the centre, on C itself. It intersects the line I (for t = to-1) at A = (to2+ I,
to' 0, 0); for the two other intersections with W we have X2+ y2 = 0 as it
should be. The intersections of (5.3) and the dorsal plane z = dw are the point
A and the point (corresponding to t= I - to) counted twice, and analogously
for the lower dorsal plane.

The system of curves derived from k2 are found in a similar way.
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6. An alternative approach to our problem would be the following. A repre.
sentation of the surface C by means of two parameters)" and IL is, for in.
stance,

(6.1) x =)" (1.2+ 1L2),Y = IL(),,2+ 1L2),z = 2 dAIL, w = (1.2+ 1L2).

A curve on C is defined if )" and IL are given functions of t. We
cubic if A and ILare linear functions. But if, for instance, )"= pt + q,
the relation

obtain a
IL-rt+s,

(6.2) rx- py+ (ps- qr)w= 0

holds, which implies that we deal with a planar cubic. Our curve k1
found from (6.1) but in a more complicated way. Indeed we obtain

),,=t-l(1 +t2)-I, 1L=(1 +t2)-1.

may be
(2.1) if
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