Univ Beograd. Publ. Elektrotehn. Far. Ser. Mat. Fiz. No $634-$ Ne 677 (1979), 33-35.
636. CUBIC SPACE CURVES ON CAYLEY'S CYLINDROID

O. Bottema

1. The cylindroid C of Cayley (also called Plücker's conoid) is a much studied metrically special ruled cubic surface which is an important subject in Ball's theory of screws. On a suitably chosen Cartesian frame the equation of C is, for homogeneous coordinates,

$$
\begin{equation*}
\left(x^{2}+y^{2}\right) z=2 d x y w, \quad d>0 . \tag{1.1}
\end{equation*}
$$

C is invariant for the reflection into $O Z$. In a horizontal plane $z=m w$ we have two generators intersecting at a point of $O Z$. In the central plane $z=0$ they are the X - and Y-axis. For $-d<m<d$ the two generators are real and distinct. For $d= \pm m$ they coincide with the dorsal lines of C, the dorsal planes being $z= \pm d w$. All generators intersect the line l with the equations $z=w=0$. The intersection of C and the plane W at infinity consists of l and the two conjugate imaginary lines s_{1} and s_{2}, given by $x^{2}+y^{2}=w=0$, intersecting at the point at infinity of $O Z$.

On C there are ∞^{1} straight lines and ∞^{2} ellipses (the intersections of C and arbitrary planes through a generator) and ∞^{3} plane cubics. We ask whether there exist on C real non-degenerate twisted cubics.
2. Such a cubic k is represented if x, y, z, w are given as four linearly independent cubic functions of a parameter t. Obviously of the intersections of k and W one, denoted by A, is on l and two, B_{1} and B_{2}, on s_{1} and s_{2}, respectively. The parameter t may be chosen such that A corresponds to $t=0$ and the B 's to $t= \pm i$. Hence we can take $2 d w=t\left(1+t^{2}\right) ; z$ must have the factor t. We take $z=t^{2}$, a choice justified by the result. The condition that k is on C reads $\left(x^{2}+y^{2}\right) t^{2}=x y t\left(1+t^{2}\right)$ which is satisfied by $x=1, y=t$ and by $x=t$, $y=1$. By this trial and error method we have found two cubics on C :

$$
\begin{array}{ll}
k_{1}: & x=1, y=t, z=t^{2}, 2 d w=t\left(1+t^{2}\right), \\
k_{2}: & x=t, y=1, z=t^{2}, 2 d w=t\left(1+t^{2}\right) . \tag{2.2}
\end{array}
$$

It is easy to verify that in both cases x, y, z, w are linearly independent, which implies that we deal with space curves.
3. k_{1} and k_{2} are special cubics on C, both with simple equations. The transformation $t^{\prime}=-t$ shows that k_{1} is invariant for the reflection into the Y-axis. It passes (for $t=0$) through $A=(1,0,0,0)$, for $t= \pm i$ through ($1, \pm i,-1,0$) and for $t=\infty$ through the origin O. A horizontal plane $V: z=m w$ intersects k_{1} at A and at two more, finite, points E_{1} and E_{2}, determined by $m t^{2}$ $2 d t+m=0$, one on each of the two generators in V. For $m=0$ one coincides
with O; for $m=d$ the generators coincide with the dorsal line $x-y=z-d w=0$ and E_{1}, E_{2} coincide at $\left(1,1,1, d^{-1}\right)$, for $m=-d$ they coincide at $(-1,1$, $-1, d^{-1}$) on the lower dorsal line $x+y=z+d w=0$. For k_{2} we have analogous results; k_{2} follows from k_{1} by interchanging x and y.
4. It is well-known that ∞^{2} quadrics pass through a twisted cubic. From (2.1) it follows

$$
\begin{equation*}
1: t: t^{2}: t^{3}=x: y: z:(2 d w-y) . \tag{4.1}
\end{equation*}
$$

This implies that through k_{1} pass all quadrics of the linear system

$$
\begin{equation*}
\alpha Q_{1}+\beta Q_{2}+\gamma Q_{3}=0, \tag{4.2}
\end{equation*}
$$

with

$$
\begin{equation*}
Q_{1}=x z-y^{2}, Q_{2}=y(2 d w-y)-z^{2}, Q_{3}=x(2 d w-y)-y z \tag{4.3}
\end{equation*}
$$

$Q_{i}=0(i=1,2,3)$ being linearly independent quadrics. The intersection of C and a quadric Q of the set (4.2) is a curve of degree six. As k_{1} is on Q and on C it belongs to the intersection and the remaining part is also of the third order. It cannot be a plan cubic because it lies on a quadric. Furthermore it is easy to verify that k_{2}, given by (2.2), does not lie on any quadric (4.2). Hence there exist two systems, both of ∞^{2} cubic space curves on the cylindroid.
5. It seems to ask for much algebra to determine explicitly the cubic curves in terms of α, β, γ. Therefore we restrict ourselves to a subset of (4.2), the cones of the set. Let T_{0} (with $t=t_{0}$) be a fixed point and T a variable point on k_{1}. We consider the cone through k_{1} with vertex T_{0}. A generator of the cone is represented by

$$
\begin{equation*}
x=1+u, y=t+u t_{0}, z=t^{2}+u t_{0}^{2}, 2 d w=t\left(1+t^{2}\right)+u t_{0}\left(1+t_{0}^{2}\right) \tag{5.1}
\end{equation*}
$$

with t fixed and u variable. This line has three intersections with C, two of them being T_{0} and T, corresponding to $u=\infty$ and $u=0$ respectively; let T^{\prime} be the third intersection. If we substitute (5.1) into (1.1), the coefficient of u^{3} and the constant term vanish and third root is

$$
\begin{equation*}
u=\left(t^{2}+t_{0} t-1\right) /\left(-t_{0} t-t_{0}^{2}+1\right) \tag{5.2}
\end{equation*}
$$

If we substitute this in (5.1), we obtain after some algebra the locus of T^{\prime} for variable t :
(5.3) $x=t+t_{0}, y=1, z=\left(t+t_{0}\right)\left(-t_{0} t+1\right), 2 d w=\left(-t_{0} t+1\right)\left(\left(t+t_{0}\right)^{2}+1\right)$,
which for any value of t_{0} represents a twisted cubic on C; we have derived therefore explicitly a system of ∞^{1} such curves.
A curve (5.3) could be considered as the projection of k_{1} from its point T_{0} as the centre, on C itself. It intersects the line $l\left(\right.$ for $\left.t=t_{0}{ }^{-1}\right)$ at $A=\left(t_{0}{ }^{2}+1\right.$, $t_{0}, 0,0$); for the two other intersections with W we have $x^{2}+y^{2}=0$ as it should be. The intersections of (5.3) and the dorsal plane $z=d w$ are the point A and the point (corresponding to $t=1-t_{0}$) counted twice, and analogously for the lower dorsal plane.

The system of curves derived from k_{2} are found in a similar way.
6. An alternative approach to our problem would be the following. A representation of the surface C by means of two parameters λ and μ is, for instance,

$$
\begin{equation*}
x=\lambda\left(\lambda^{2}+\mu^{2}\right), y=\mu\left(\lambda^{2}+\mu^{2}\right), z=2 d \lambda \mu, w=\left(\lambda^{2}+\mu^{2}\right) . \tag{6.1}
\end{equation*}
$$

A curve on C is defined if λ and μ are given functions of t. We obtain a cubic if λ and μ are linear functions. But if, for instance, $\lambda=p t+q, \mu=r t+s$, the relation

$$
\begin{equation*}
r x-p y+(p s-q r) w=0 \tag{6.2}
\end{equation*}
$$

holds, which implies that we deal with a planar cubic. Our curve k_{1} may be found from (6.1) but in a more complicated way. Indeed we obtain (2.1) if

$$
\lambda=t^{-1}\left(1+t^{2}\right)^{-1}, \mu=\left(1+t^{2}\right)^{-1} .
$$

Charlotte de Bourbonstraat 2
2628 BN Delft, The Netherdands

