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605. COMPARABLE L,-NORMS OF SUBADDITIVE FUNCTIONS

Paul R. Beesack

Dedicated to Professor D. S. Mitrinovié on the occasion of his seventieth birthday

In a paper published in 1969, F. C. HsIANG [3] proved the following
result.

Theorem 1. (a) Let { be positive and monotone increasing and let w be positive:
on (0, A) where 0<A< + oo. Let p=1 and suppose that w(x)shx for 0 <x<<A
and some constant h>0. Then there exists an absolute constant M =M (h, p)>0
such that for all positive, measurable, subadditive functions ¢ on (0, A) we have
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(b) Moreover, if Y is positive and monotone decreasing on (0, A) and there are

constants ¢, k such that 0<c<%, k>0, and Y (cx)<k{(x) for 0<x<4, then

the inequality (1) is still valid for some M =M (c, k, h, p)>0.

This is not quite the form in which the theorem of [3] was stated, but
is what was actually proved. Theorem 1 is a generalization of an earlier theo-
rem of R. P. GosseLiN [1, Th. 1] who dealt with the special case w(x)=ux,
¢ (x)=x* a&R. In a later paper [2, p. 258] GOSSELIN noted, in a somewhat
different context, that his result remained valid if the L, -norm appearing on
the right side (of the special case) of (1) was replaced by the L,-norm, where-
now 0<g<p<<oo.

It is the purpose of this note to show that Theorem 1 can itself be so
extended, and to use this result to obtain a similar comparability result whem
w(x)<hx® (B>1) but 4 is finite.

Theorem 2. Let §, ¢, w satisfy the hypotheses of Theorem 1 and let 0<q<<p<<oo.
In case (a) there exists an absolute constant M =M (h, p, q9)>0 such that

A 4
: Loy f (a2
@ N5 = ([ G)S
0 0
while in case (b), (2) remains valid for some M =M (c, k, h, p, 9)>0.
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Proof. In case (a) we choose any constant ¢, 0= c<%, and let

A
= f (@/0)w=1dx. As in [3], let
0

G- {xc(0, H:900)=(nlog2(1-0)) " 1y},
and E=(0, A\G. Then
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As in [3], it follows that for every x& (0, 4) there exists y, z& (ex, (1 —¢) x)
(G such that x=y+z. Since the proof in [3] contains some misprints which
.obscure the logic, we provide the proof here. Indeed, if the assertion is false
then there exists x,6(0, 4) such that for all y&(cx,,(1—c)x,) we have either
_y€E0=Eﬁ(cxo,(l ~c)x0), or z=x,—y&E,, ie. yEx,—E;=FE,. Hence
(exy, (1 =€) x,) =EyUE,.
Since the sets E;, E, have the same Lebesgue measure, we have

(I1-20)x,=(1—0)xy—cxy=| E,UE, |2 E, |,
.or |E0|g(i—c)xo, so that E,; occupies at least half of the interval (cx,,
2

{1 —c¢)x,). Since x~! has larger values for x<%x0 than for x;%xo, it the-

refore follows that
(1—c)xo
x“dngx“dx.
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Hence by (3),

(1—-c)xp
log(2(1-¢)) = f x“ldxéfx‘ldxéhf§5<10g(2(1—0)),
« w
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-and this contradiction proves the assertion.
Thus for each xZ(0, A) we obtain
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for appropriate y, zEGﬂ(cx,(l—c)x). Since y, z<(1—c)x<<x while Y is
nondecreasing in case (a), it follows that

o =2(hflog(2(1-0))" 1Y) (0<x<4),
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On integrating over (0, 4) and taking p'* roots, we obtain (2) with
%) M = (29 hfleg (2(1~))) "%

It is clear that in this case (a), we may take c¢=0, and this gives the best
choice for M in (5).

In case (b) we choose that value of cE(O, %) such that ¢ (cx) <k¢ (x) on
(0, 4). From (4), since ¢ is now nonincreasing and y, z=cx, we obtain
o) =2k( hflog (2(1-0)))" 1Y (x) (0<x<A).
The inequality (2) follows as before, but with
(6) M =((2k) hflog[2 (1 —c)])l/a—1lp,
Corollary. Let w be positive on (0, A), where 0<<A<C oo, and satisfy w(x)=<hx?

for some constants h>0, B>1. Let O<<q<p<<oo and let , ¢ satisfy the hypo-
theses of Theorem 1. Then the inequality (2) holds with

(7a) M =(29h A%~ /log 2)1/a—1ip in case (a),
(7b) M=(2k)y1h AP~ log[2 (1 —c)])t/a—1r in case (b).

The proof follows at once from the fact that w(x)<h, x on (0, 4), for
h,=h A®~1, together with formulas (5) with ¢=0, and (6).
Note that a corresponding result holds for the case w(x)<hxP(B>1),
even if 4= oo, provided w is bounded on (0, A). For, if
K,=sup (w(x):0<x<A)< oo

then again w(x)=<h,x on (0, 4) for h2=K,1,'(1/ B '8 1t would be useful to prove
a comparability theorem (even for the case { (x)=1) without the requirement
that w be bounded on (0, A) for B>1.
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