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551. EQUIVALENT L,-NORMS OF SUBADDITIVE FUNCTIONS*

~

Pau! R. Beesack

In this paper we prove the following theorem which is an extension of
a result of R. P. GosseLIN [3]. GOsseLIN’s result is essentially the special
case F(x)=|x|**?P%, and the following proof is a modification of that in [3].

Theorem. Let ¢ : R"— R be positive, measurable, and subadditive, and let 0<<p < + 0.
Let F be positive and measurable on R" and satisfy the following condition: if
0y, ;, 0, are unit vectors in R" such that w,=r, v, +r, v, for some r,, r,CR then

(N F(ro)zK(|r|)F(rr;e) for r=0,i=1, 2,

where1 K:R* — R*" is measurable, inf{K(r): a=r=p}>0 for 0<a<f< + 0,
and f r7dr/K(r)< + 0. Let ©,,...,w, be linearly independent unit vectors,
and ?set

QP (r ) re—1

Firo) dr.

2 M (o) =

o%-g

There exist constants A, B depending on K, p, n such that

PP (x) c P2 (x)
2 dx<4 ), M(—ow)]|<B | —dx.
3) f F oo X< izlmax M(w), M(—o0)]< f F o) X
Rn R7

By taking r,=1, r,=0 we observe that (1) implies K(1)< 1. For GOSSELIN’s
result, (1) holds with K(s)=s~—®+#®, To prove the theorem we write x=rw,
where

w=(CosQ,, SinG,COSP,, ..., SINQ -« -SINP,_2COS Pu_q, SINQ, SINP, - - +SINPu_y),
and let
Q={wcR":|o|=1}={w:0=¢,s7, 1<jsn-2, 0=¢, =27}

With dw =sing,_;sin*¢, 3+ - -sin"~2¢, do,- - -dg,_y, we have [2, p. 268]

+w
[f@dx= [ ([ fre)r1dr)do.
Rn 0

Q

Using this notation, we now appeal to GOSSELIN’s Lemma [3]:
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There exist constants a, b, ¢ with 0<<a<<b< 4+ o0, 0<ec<1 (in fact %<
<c<1) such that if I is a measurable subset of Q for which \
(4) IT),= [dozc|Q],
r
then for each <& Q there exist o, w,cI' and r,, r,E[a, b) such that
(%) O=rw +r,,.

Now let M= f {p? (x)/F (x)}dx, so that by (2) and the preceding we have
Rn
(6) M= [ M@w)do.
Q

As in {3], we first show there is a constant D=D (n, p, K) such that
(7) M(w)<DM for o).

To this end, let I'={0cQ: M (0)=M[(1-c)|Q|]"'}, with ¢ as in (4), and
let IV=Q\JTI'. Then

M
(L)EP’jM w)> ’
b 6) ©) (1—o) Q2
SO Dy s
Q'a"‘,P's)
Mz | M(w)do> fd M2 RIS T
f (©) (l—c)l% T a1y,

whence |['[;>c|QJ;. By the lemma, given « CQ we may write © =r, &, +r,®
where o,;, w,EI" and r,, r,E[a, b]. Hence for r=0, by subadditivity,

pra)=o(rri o, +rr,w,) =@ (rryw)+¢(rr, o,),
@7 (r 0) < C, {9P (rr; ) + 97 (rr, »,)},
where C,=27"1if pz1 or C,=1 if 0<p=1. By (1), (2),

—+ o0 “+ oo

M@=C f__q)f_m_‘_)__rn-—ldr_l_c PP (rr, @) rr=1dr.
i K@) F(rryw) 2 K(r,) F(rry»),)
0

Setting r =r;~!s this reduces to

M(m)§C{M(ml) +M(m2)J§ MC, { 1 N 1 }
PlepK(r) rfK@r))  (1—0)|Ql n" K@) r" Kr)

because ®,, w,ET". This proves (7) with

< 2
(1—0) [Qs inf mK(r)
a0, 5]

(8) D=

Recalling the definition of M, and (7), the right-hand inequality of (3) now
follows with B/4=nD where D is defined by (8).
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To prove the left-hand inequality of (3) let x40 be given, say

n
X=rw=ry ¢(w)o,
i=1

As above, we have

P’ (ro)=C, > P (re; o).
i=1

For each i, we may write & =c;o;+ |/

v#0, or w=c,w,; if v=0. Hence by (1),

&; where v= 2 ¢;0; and &,=|v| 1y if
i

F(ro))zK(|c,-(m)[)F(rcioa,-), 1<ign,
80

+ o0
M({)=C z PP (re;o) !
(©) pigl-[ K(Jc; (@)]) F (re; o))

Set r|c;(w)|=s, and this reduces to

+ o0

M gC z cpp(s(:‘:(“)i)) snt d 1
(©)= pigl [f F(s (L)) : lei (@) " K (J¢; () ])
0
< Cpi max [M (w;), M (—w))] ’ Q.

1 (@)K (¢ (w)])

i

[

Hence, by (6),

M=C, S max[M(e,), M(—wi)]f‘ o do
i=1 ¢ ()"
Q

K(lci@)))’

so that the first inequality of (3) will follow, with

) A=C, max I,
1<1<n
provided
10 fi l<izn.
(10) [JC.(w)["K(lc,(m)l) < oo for feien

Precisely as in [3], by a rotation we can arrange that c;(®w)—=cos¢, so that

2t ™ )
sing,_,---sin”"2¢
] o [t o
|cos @, | K ([cosg, )
2n W T T2

) o sil’l‘Pn_z"-Sin”*zfpld ceedg,_y.
f f f f (cosq K (cosgy b TP
0o 0 00

The condition f r—7dr/K(r)<< 4+ oo clearly implies that I, is finite, and the
0
proof is complete.
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As a simple example, take F(x)=»5%|x|®+c?|x|*, where b, c#0 and
f>y>n—1. Condition (1) is easily seen to be satisfied with
K(r)=min(r=8, r—)(=r-v for 0<r=l).

We conclude by noting that if we denote M (w) in (2) by M,(w), and

similarly write
)
M, - fF‘(x;dx= fMp(co)dco,
R Q

then for 0<p<g< + o, we will have

(1) M A(p, q) M, P

provided the corresponding one-dimensional inequality

(12) MM (0)<B(p, ) M,"(0)  (0EQ),

holds. Indeed, if we rewrite (7) as M,(w)<D, M, and (12) holds, then it is
easy to verify that (11) holds with A(p, ¢)=B(p, q9)- D"~ In the special
case F(x)=|x|"?* considered by GOSSELIN, it was noted that (12)-hence also
(11)-does hold, but I do not know whether this is true for those F satisfy-
ing (1). A generalization of GOSSELIN’s case of inequality (12) was proved in
[1], but does not include (12) for F satisfying (1).
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