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549. ADDITIONS TO KAMKE'S TREATISE, VII: VARIATION
OF PARAMETERS FOR NONLINEAR SECOND ORDER

DIFFERENTIAL EQUATlONS*

Jovan D. Keckic

The well known cIassicial method usually referred to as the variation of para-
meters has been successfully applied to linear differential equations. In the pre-
sent paper we shall demonstrate that this method can also be applied to certain
nonlinear differential equations.

(1.1)

1. Consider the equation

y" +f(x)y' =F(x, y. y').

( 1.2)

We first solve the linear part of (1.1), namely the equation

y" + f(x) y' = o.

From (1.2) follows

(1.3)
, 17-

Jf(x)<Ix

Y = fte ,

where K is an arbitrary constant. Suppose that K is a differentiable function
of y, and differentiate (1.3) to obtain

(1.4) y" =K' (y)K(y) e
-2 Jf(x)dx

-K(y)f(x) e-J f(X)<Ix.

Substituting (1.3) and (1.4) into (1.1) we find

-2 J f(x)dx ( -J f(X)dX )K'(y)K(y)e =F x, y,K(y)e .

Clearly, (1.5) will be a first order differential equation for K(y) if

F (x, y, K (y) e- J f(x) dX)
= e

-2 J f(x) <Ix
M(y, K (y»).

Equality (1.6) will take place if, for example,

(1. 5)

(1. 6)

where hv are arbitrary functions, IXvare real numbers, and n is a positive inte-
ger. In that case (1. 5) becomes

(1.7)
n

K' (y)= Lhv(y)K(y)"v-l.
v=1
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We therefore arrive at the following result:

The second order differential equation

(1. 8)
n

y" + f(x) y' = L hv (y) (y')"'v e("v -2) $f(x)dx
v=1

can be reduced to the first order equation (1.7).

Furthermore, if K (y) =
(jj (y, A), where A is an arbitrary constant, is the

general solution of (1. 7), then the general solution of (1. 8) is given by

J
dy

= Je-$ f(X)dxdx+B,
<P(y, A)

where B is the other arbitrary constant.

2. We now consider some particular cases of equations (1.7) and (1.8).

(i) It is known (see, for example, [1]) that the following two generalized
forms of EMDEN'Sequation

y" +f(x)y' +g(x)y'=O (r real number)
and

y" + f(x)y' + g (x) eY= 0

. -2$ f(x)dx
are integrable by quadratures If g (x) = ce (c = const). The same result
holds for the equation

(2.1) y" + f(x) y' + g (x) h (y) = 0,

. -2$ f(x)dx
With g(x)=ce .

Indeed, equation (2.1) is obtained from (1.8) by
hi (y) = - ch (y). The corresponding equation (1. 7) takes
form: K'(y)K(y)+ch(y)=O.
REMARK.This result was published in [2].

(ii) Let n = 2, CXI= 2, CXz= cx. Equation (1.7) becomes a BERNOULLI type
equation

setting n= 1, CXI=0,
the following simple

K' (y) = hi (y) K (y) + hz (y) K (y)"-l,

and hence the corresponding equation (1.8)
(",-2)$f(x)dx

y" + f(x)y' = hi (y) (y')Z + hz (y) (y')'" e(2.2)

can be integrated by quadratures.
In particular, for cx= 0 we have the equation

(2.3)

Equation (2.3) is in connection with an equation given by R. T. HERBST
[3] (see also W. F. AMES [4], p. 62). Namely, HERBSTproved the result:

The nonlinear equation
-2$ f(x)dx

y" + f(x)y' + q (x) Z (y) = A (y) (y')z+ C(y) e ,(2.4)



Additions to Kamke's treatise, VII: Variation of parameters. . . 33

where

(2.5) ZC' +(3 -AZ)C=O, Z' -AZ= I

has general solution y = F (u, v), where u, v are independent solutions of the
linear equation

Y" +f(x) Y' +q(x) Y=O.

For q (x) == 0, HERBST'S equation (2.4) becomes (2.3). However, the fact
that equation (2.3) is integrable by quadratures is not a consequence of HERBST'S
result, since the functions A (y) and C(y), which appear in (2.4) for q= 0 are
tied by (2.5), or eliminating Z (y), by

( 3 C )' -
3 AC

- I
AC-C' AC-C'

- ,

while the functions hI (y) and hz (y) in (2.3) are arbitrary.

Hence, the class of differential equations defined by (2.3) overlaps with
the class defined by (2.4) and (2.5).

(iii) Let n = 3, (XI= 0, (Xz= 2, (X)= m, hI (y) = - a ~ (y), hz (y) = - rp(y),
h) (y) = - b ~ (y). We obtain the equation

(2.6) y" + f(x) y' + a ~ (y) e-Z! f(x)dx
+ rp(y) (y')Z + b ~ (y)(y,)m im-2d f(x) dx

= 0,

considered by L. M. BERKOVICand N. H. Rozov [5], who reduced it to the
equation

(2.7)
d2 z

(dZ)
Z

(dz )
m

-+a~(z)+rp(z) - +b~(z) - =0.
dt2 dt dt

(2.8)

According to our result, equation (2.6) can be reduced to the equation

K' (y) + a Iji (y) K(y)-l + rp(y) K(y) + b ~ (y) K(y)m-l = O.

However, equation (2.7) after the

which means that the result of BERKOVIC
result.

(iv) For n=3, (Xv=V' equation (1.7) becomes the RICCATI equation

3
K'(y)= 2hv(y)K(y)V-l.

v=1

substitution
dz

= K (y), becomes (2.8)
dt

and Rozov is a special case of our

(2.9)

There are many conditions which ensure the integrability of equation (2.9).
A number of those is given in KAMKE [6]. Hence, each of those conditions
implies the integrability of the equation

(2.10)

It is also interesting to note the following fact.
Equation (2.9) is equivalent to the linear equation

(2. 11) h) (y) K" (y) - (h)' (y) + h3 (y) hz (y») K' (y) + h3(y)2 hI (y) K(y) = O.
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Hence, the nonlinear
ation (2.11).

(v) For n = 4, r:t.v= v,
first kind

equation (2.10) can be reduced to the linear equ-

equation (1.7) becomes the ABEL equation of the

4

K' (y) = L hv (y) K (y)v-l.
v~1

A number of integrable ABEL'S equations is recorded in [6]. Each of these
cases leads to an integrable second order equation

4

y" + f(x)y' = L hv (y) (y')Ve(V-2) J I
(x) dx.

v~1

3. There exist equations which can be reduced to equation (1.8). We
exhibit one such example.

Consider the equation

(3.1) y" + f(x) y' + q (x)Y= F(X)yk.

Put Y = pu, where p satisfies the linear equation

(3.2)
We find

p" + f(x)p' + q (x)p = O.

(3.3) u" + (2 ~ +f) u' = F(x)pk-l Uk.

Equation (3.3) will have the form (1.8) if

-2J I(x) dx
F(x)=cp-k-3e

Hence, the differential equation

(c = const).

-2J I(x)dx
(3.4) y" + f(x) y' + q (x) y = cp (X)-k-3 e yk

where p satisfies (3.2) is integrable by quadratures.
In particular, for f(x)=O, we obtain the integrable equation

y" + q (x) y = cp (X)-k-3 yk (c = const),

(c = const)

(3.5)

where p satisfies (3.2).
In the special case k = - 3, equation (3.5) reduces to the equation

y" + q (x)y= Cy-3 (c =const)(3.6)

which was solved, as claimed by L. M. BERKOVICand N. H. Rozov [7], by
V. P. ERMAKOVin 1880. Nevertheless, it was a short note by E. PINNEY [8]
regarding (3.6) that served as a starting point for a fruitful search of exact
solutions of nonlinear second and higher order equations (see, for example,
[3] and [9] - [14]).

It is interesting to note that BERKOVICand Rozov solved in the menti-
oned paper [7] equation (3.5) but under the condition that p is a solution of
ERMAKOV-PINNEY'Sequation (3.6).
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4. We now apply the variatiot} of parameters to an other second order
equation.

Consider the equation

y" + g (y)(y')2 = G (x, y, y').

We first obtain a first integral of the equation

y" + g (y) (y')2 = 0
In the form

, v-Jg(y)dy
Y = fie ,

where K is an arbitrary constant.
Supposing that K is a differentiable function of x, and applying the pro-

cedure similar to that of section I, we arrive at the following result:

The second order differential equation

(4.1 )

can be reduced to the first order equation

n

(4.2) K' (x) = Lhv (x) K (x)"v.
v=1

Furthermore, if K (x) = \jI(x, A), where A is an arbitrary constant, is the
general solution of (4.2), then the general solution of (4.1) is given by

JeJ g(Y)dYdy=B+ J \jI (x, A) dx,

where B is the other arbitrary constant.

5. Some interesting particular cases of (4.1) can be formed. As an example we men-
tion the equation

(5.1)
f' (y) ,

y" -- (y)2 +F(x) y' + H (x) fey)
= 0

fey)

recorded by KAMKE [6] as equation 6.52.

Equation (5.1) is obtained from (4.1) for n = 2, IXI~ 1, 1X2
= 0, g (y) ~ -

f' (y),
hI (x) ~

fey)
=-F(x), h2(x)~-H(y). The corresponding equation (4.2) becomes in that case the linear

equation

(5.2) K' (x) +F(x) K (x)+H(x) =0

and hence (5.1) can be integrated by quadratures.
In particular, for fey) = y, we obtain the equation

y" +F(x)y'-rl (y')2+H(x)y=0.(5.3)

P. PAINLEVEshowed in [15] (see also [4], p. 60 and [6], equation 6.129) that the solu-
tion of the equation
(5.4) y" + F(x) y' + ar I (y')2+ H (x) y=O

is y = ul1(1+0), where u is the solution of

u" +F(x) u' + (a+ 1) H (x) u=O.

3.
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PAINLEVE'S result clearly does not hold for a~ -1. However, for a= -I, equation (5.4)
becomes (5.3) with the corresponding equation (5.2) and can therefore be integrated by
quadratures.

Again, for n = 2, 0(1~ 0, O(z= 0(, we obtain the equation

(5.5)
- J g(y)dy (IX-I) J g(y)dy

y" + g (y) (y')z = hi (x) e + hz (x) (y')1Xe

which is integrable by quadratures because the corresponding first order equation is a
BERNOULLI type equation

K' (x) = hi (x) K (x) + hz (x) K (X)IX.

In the special case, when g(y)~ay-I (a=const*O), (5.5) becomes

y" + ay-I (y')Z = hi (x) y-a + hz (x) (y')1Xya(IX-I).

A substantial number of equations of type (5.6) is recorded by KAMKE [6].

(5.6)

(6.1)

6. It might be of interest to note that the equation

y" + f(x) y' + g (y) (y')2 = 0,

often referred to as LIOUVILLE'Sequation, can be integrated by both methods
given in section 1 and section 4. (It can also be integrated directly after divi-
ding by y'.)

The reason is that equation (6.1) does not change its form if x is taken
as the independent variable of the dependent variable y.
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