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549. ADDITIONS TO KAMKE’S TREATISE, VII: VARIATION
OF PARAMETERS FOR NONLINEAR SECOND ORDER
DIFFERENTIAL EQUATIONS*

Jovan D. Keckié¢

The well known classicial method usually referred to as the variation of para-
meters has been successfully applied to linear differential equations. In the pre-
sent paper we shall demonstrate that this method can also be applied to certain
nonlinear differential equations.

1. Consider the equation

(L.1) V'+f(x)y' =F(x,y,¥).

We first solve the linear part of (1.1), namely the equation
(1.2) Y +f(x)y' =0.

From (1.2) follows
(1.3) y=ke O

where K is an arbitrary constant. Suppose that K is a differentiable function
of y, and differentiate (1.3) to obtain

(1.4) Y =K WE®e " _kopyre

Substituting (1.3) and (1.4) into (1.1) we find
-2 f(x)dsz(

-] fxyax

(1.5) K () K@®)e x, 3, Ky 7O%),

Clearly, (1.5) will be a first order differential equation for K(y) if

—J Fx)dx -2 § f(x)dx
(1.6) Flx, y, k(e 0% =21 9% (5, K (99).

Equality (1.6) will take place if, for example,

Fu,v,w)= 2 h,()w™ G If(u)du’
v=1

where h, are arbitrary functions, «, are real numbers, and » is a positive inte-
ger. In that case (1.5) becomes

(.7 K ()= Zh()KE™

* Presented January 5, 1976 by D. S. MrtrINOVIC,
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We therefore arrive at the following result:
The second order differential equation

(1.8) YIHF@ Y = Zh () () es=D I F @
v=1

can be reduced to the first order equation (1.7).

Furthermore, if K(y)=®(y, A), where A is an arbitrary constant, is the
general solution of (1.7), then the general solution of (1.8) is given by

[l o fel/ovanis
@ (v, A) ’

where B is the other arbitrary constant.
2. We now consider some particular cases of equations (1.7) and (1.8).

(i) It is known (see, for example, [1]) that the following two generalized
forms of EMDEN’s equation

Y Afx) Y +gx)y =0 (r real number)

and
V'+f(¥)y +g(x)er=0
. . —2§ f(x)dx
are integrable by quadratures if g(x)=-ce (¢c=const). The same result
holds for the equation
(2.1 V' +fx)y +g(x)h(»)=0,

. —2] f(x)dx
with g (x)=ce Ire .

Indeed, equation (2.1) is obtained from (1.8) by setting n=1, «, =0,
h,(y)= —ch(y). The corresponding equation (1.7) takes the following simple
form: K’ (y)K(y)+ch(y)=0.

ReMARk. This result was published in [2].

(i) Let n=2, @, =2, a,=«. Equation (1.7) becomes a BERNOULLI type

equation
K D=h () KQ)+h () Ky

and hence the corresponding equation (1.8)
, Ny @—2)f f(x)d
2.2) VL)Y = () (7 + by () (7SO
can be integrated by quadratures.

In particular, for «=0 we have the equation

" ’ , -2[f(x)d

(2.3) VAR Y =h () (VR (e

Equation (2.3) is in connection with an equation given by R. T. HERBST
[3] (see also W. F. AMEs [4], p. 62). Namely, HERBST proved the result:

The nonlinear equation

(24) Y'Y +q(x)Z(N=A4() (V)P +C(») o2 o
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where
(2.5) ZC'+(3—-4Z)C=0, Z'—AZ=1
has general solution y=F(u, v), where u, v are independent solutions of the

linear equation
Y'+f(x)Y +q(x)Y=0.

For q(x)=0, HErBST’s equation (2.4) becomes (2.3). However, the fact
that equation (2.3) is integrable by quadratures is not a consequence of HERBST s
result, since the functions 4 (y) and C(y), which appear in (2.4) for g=0 are
tied by (2.5), or eliminating Z(y), by

( 3¢C )’_ 34C
AC—-C’ AC—C’

2

while the functions &, (y) and %4,(y) in (2.3) are arbitrary.

Hence, the class of differential equations defined by (2.3) overlaps with
the class defined by (2.4) and (2.5).

(i) Let n=3, «,=0, 0,=2, ay=m, h(y)=—-ab(), h()=-9(),
hy ()= —bB(y). We obtain the equation

(2.6) Y+ ()Y +ab () e O 4o () ()21 bB () ()" e IIWE g,

considered by L. M. BerkoviC and N. H. Rozov [5], who reduced it to the

equation
2.7 ¢z

ds?

dz\2 dz\m
+a¢(z)+<p(z)(d—t) —I—bﬂ(z)(a) 0.
According to our result, equation (2.6) can be reduced to the equation
(2.8) K)+abMEOD) 1+ KO)+bB(») K()m1=0.

However, equation (2.7) after the substitution % =K(y), becomes (2.8)

which means that the result of BERkOvVIC and Rozov is a special case of our
result.

(iv) For n=3, a,=v, equation (1.7) becomes the RICCATI equation

3
(2.9) K= 200K

There are many conditions which ensure the integrability of equation (2.9).
A number of those is given in KAMKE [6]. Hence, each of those conditions
implies the integrability of the equation

—If(x)dx If(x)dx

(2.10)  Y'+f()y' =h(»)ye +h, () (V) +hy(¥) (V') e

It is also interesting to note the following fact.
Equation (2.9) is equivalent to the linear equation

.11 by (D K" (0~ (b () +y (¥) by (D) K’ (3) + by ()2 by (9) K(¥)=0.
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Hence, the nonlinear equation (2.10) can be reduced to the linear equ-
ation (2.11).

(v) For n=4, a,=v, equation (1.7) becomes the ABEL equation of the
first kind

4
K'(y) =Elhv (NK (L.

A number of integrable ABEL’s equations is recorded in [6]. Each of these
cases leads to an integrable second order equation

4
12 I , v-2) .f f(x)dx
Y'Y = 2h () ()e :

3. There exist equations which can be reduced to equation (1.8). We
exhibit one such example.

Consider the equation

3.1 V' Hf()Y +q(x)y=F(x)y~
Put y=pu, where p satisfies the linear equation
(3.2) P Hf(X)p +q(x)p=0.
We find
(3.3) u"+(2p—+f)u'=F(x)pk—1uk.
P

Equation (3.3) will have the form (1.8) if
—2f f(x)dx

F(x)=cp~*-3e (c=const).
Hence, the differential equation
-2 X
B4 Yy Y Ha@ = *2e TP (o const)

where p satisfies (3.2) is integrable by quadratures.
In particular, for f(x)=0, we obtain the integrable equation

(3.5) V' +q(x)y=cp(x)F-3yk (c=const),
where p satisfies (3.2).

In the special case k= —3, equation (3.5) reduces to the equation
(3.6) y'+q(x)y=cy? (¢ =const)

which was solved, as claimed by L. M. BErkoviC and N. H. Rozov [7], by
V. P. ErMAKOV in 1880. Nevertheless, it was a short note by E. PINNEY [8]
regarding (3.6) that served as a starting point for a fruitful search of exact
solutions of nonlinear second and higher order equations (see, for example,
[3] and [9] — [14]).

It is interesting to note that BERKOVIC and Rozov solved in the menti-
oned paper [7] equation (3.5) but under the condition that p is a solution of
ERMAKOV-PINNEY’s equation (3.6).
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4. We now apply the variation of parameters to an other second order
equation.

Consider the equation
V'+gW(V)P=G(x, p, ¥).

We first obtain a first integral of the equation

y'+g(»(¥)*=0
in the form
- d
y —Ke Jew ,v’
where K is an arbitrary constant.

Supposing that K is a differentiable function of x, and applying the pro-
cedure similar to that of section 1, we arrive at the following resuit:

The second order differential equation

) ¥ ()= % b () ()T

can be reduced to the first order equation

(4.2) K’ (%) =glhv (x) K (x)™.

Furthermore, if K(x)=1{ (x, 4), where 4 is an arbitrary constant, is the
general solution of (4.2), then the general solution of (4.1) is given by

[ EPYay—B+ [§ (x, 4)dx,

where B is the other arbitrary constant.

5. Some interesting particular cases of (4.1) can be formed. As an example we men-
tion the equation

o, ,
5.1 ”——)(y Y+F(x)y'+HX f()=0
)
recorded by KAMKE [6] as equation 6.52.
Equation (5.1) is obtained from (4.1) for n=2, a,=1, «,=0, g(y)= —J:(—y), hy(x)=

= —F(x), h,(x)=—H (»). The corresponding equation (4.2) becomes in that case the linear
equation

(5.2) K'®+F®)K@E+H@)=0
and hence (5.1) can be integrated by quadratures.

In particular, for f(»)=y, we obtain the equation
(5.3) V' 4+F@)y—y ' (YP+H(x)y=0.

P. PaINLEVE showed in [15] (see also [4], p. 60 and [6], equation 6.129) that the solu-
tion of the equation

(5.9 V' +F(x)y +ay- 1 (yP+H(x)y=0
is y=u''+a), where u is the solution of
W +F(x)u'+(a+1)H (x)u=0.

3*
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PAINLEVE’s result clearly does not hold for a=—1. However, for a= —1, equation (5.4)
becomes (5.3) with the corresponding equation (5.2) and can therefore be integrated by
quadratures.

Again, for n=2, a, =0, a,=a, we obtain the equation

, , —feay % @D feody
(5.5) Y+egM Y =hx)e +h, () () e

which is integrable by quadratures because the corresponding first order equation is a

BErRNOULLI type equation
K" () =hy (x) K () + by (x) K ()%

In the special case, when g (¥)=ay~! (a=const#0), (5.5) becomes
(5.6) Y ray Tt () =h (x) yT e+ hy (x) () yela D).
A substantial number of equations of type (5.6) is recorded by KAMKE [6].

6. It might be of interest to note that the equation

(6.1) V' +f(x)Y +g() () =0,

often referred to as LIOUVILLE’s equation, can be integrated by both methods
given in section 1 and section 4. (It can also be integrated directly after divi-
ding by y'.)

The reason is that equation (6.1) does not change its form if x is taken
as the independent variable of the dependent variable y.
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